Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Med Imaging (Bellingham) ; 4(3): 031213, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28983493

RESUMEN

The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

2.
Med Phys ; 44(10): e339-e352, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29027235

RESUMEN

PURPOSE: Using common datasets, to estimate and compare the diagnostic performance of image-based denoising techniques or iterative reconstruction algorithms for the task of detecting hepatic metastases. METHODS: Datasets from contrast-enhanced CT scans of the liver were provided to participants in an NIH-, AAPM- and Mayo Clinic-sponsored Low Dose CT Grand Challenge. Training data included full-dose and quarter-dose scans of the ACR CT accreditation phantom and 10 patient examinations; both images and projections were provided in the training data. Projection data were supplied in a vendor-neutral standardized format (DICOM-CT-PD). Twenty quarter-dose patient datasets were provided to each participant for testing the performance of their technique. Images were provided to sites intending to perform denoising in the image domain. Fully preprocessed projection data and statistical noise maps were provided to sites intending to perform iterative reconstruction. Upon return of the denoised or iteratively reconstructed quarter-dose images, randomized, blinded evaluation of the cases was performed using a Latin Square study design by 11 senior radiology residents or fellows, who marked the locations of identified hepatic metastases. Markings were scored against reference locations of clinically or pathologically demonstrated metastases to determine a per-lesion normalized score and a per-case normalized score (a faculty abdominal radiologist established the reference location using clinical and pathological information). Scores increased for correct detections; scores decreased for missed or incorrect detections. The winner for the competition was the entry that produced the highest total score (mean of the per-lesion and per-case normalized score). Reader confidence was used to compute a Jackknife alternative free-response receiver operating characteristic (JAFROC) figure of merit, which was used for breaking ties. RESULTS: 103 participants from 90 sites and 26 countries registered to participate. Training data were shared with 77 sites that completed the data sharing agreements. Subsequently, 41 sites downloaded the 20 test cases, which included only the 25% dose data (CTDIvol = 3.0 ± 1.8 mGy, SSDE = 3.5 ± 1.3 mGy). 22 sites submitted results for evaluation. One site provided binary images and one site provided images with severe artifacts; cases from these sites were excluded from review and the participants removed from the challenge. The mean (range) per-lesion and per-case normalized scores were -24.2% (-75.8%, 3%) and 47% (10%, 70%), respectively. Compared to reader results for commercially reconstructed quarter-dose images with no noise reduction, 11 of the 20 sites showed a numeric improvement in the mean JAFROC figure of merit. Notably two sites performed comparably to the reader results for full-dose commercial images. The study was not designed for these comparisons, so wide confidence intervals surrounded these figures of merit and the results should be used only to motivate future testing. CONCLUSION: Infrastructure and methodology were developed to rapidly estimate observer performance for liver metastasis detection in low-dose CT examinations of the liver after either image-based denoising or iterative reconstruction. The results demonstrated large differences in detection and classification performance between noise reduction methods, although the majority of methods provided some improvement in performance relative to the commercial quarter-dose images with no noise reduction applied.


Asunto(s)
Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/patología , Dosis de Radiación , Tomografía Computarizada por Rayos X , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Metástasis de la Neoplasia , Variaciones Dependientes del Observador , Control de Calidad , Relación Señal-Ruido
3.
Med Phys ; 42(10): 5679-91, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26429242

RESUMEN

The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of the research project, but, typically, such validation involves either comparison of simulation results to physical measurements or to previously published results obtained with established Monte Carlo codes. The former is complicated due to nuances of experimental conditions and uncertainty, while the latter is challenging due to typical graphical presentation and lack of simulation details in previous publications. In addition, entering the field of Monte Carlo simulations in general involves a steep learning curve. It is not a simple task to learn how to program and interpret a Monte Carlo simulation, even when using one of the publicly available code packages. This Task Group report provides a common reference for benchmarking Monte Carlo simulations across a range of Monte Carlo codes and simulation scenarios. In the report, all simulation conditions are provided for six different Monte Carlo simulation cases that involve common x-ray based imaging research areas. The results obtained for the six cases using four publicly available Monte Carlo software packages are included in tabular form. In addition to a full description of all simulation conditions and results, a discussion and comparison of results among the Monte Carlo packages and the lessons learned during the compilation of these results are included. This abridged version of the report includes only an introductory description of the six cases and a brief example of the results of one of the cases. This work provides an investigator the necessary information to benchmark his/her Monte Carlo simulation software against the reference cases included here before performing his/her own novel research. In addition, an investigator entering the field of Monte Carlo simulations can use these descriptions and results as a self-teaching tool to ensure that he/she is able to perform a specific simulation correctly. Finally, educators can assign these cases as learning projects as part of course objectives or training programs.


Asunto(s)
Método de Montecarlo , Informe de Investigación , Tomografía Computarizada por Rayos X , Benchmarking , Mama , Humanos , Estándares de Referencia
4.
Med Phys ; 40(5): 051903, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23635273

RESUMEN

PURPOSE: In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI(vol). However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. METHODS: Thirty-nine adult abdomen/pelvis and 32 chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI(vo)l (CTDI(vol),global) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI(vol) values, referred to as regional and organ-specific CTDI(vol), were calculated for each patient. Using an approach similar to TG 204, all CTDI(vol) values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with patient size was investigated. RESULTS: For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI(vol) values. For example, when estimating dose to the liver, CTDI(vol),global yielded a R(2) value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI(vol) for abdomen and liver, respectively. For breast dose, the global CTDI(vol) yielded a R(2) value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI(vol) for chest and breasts, respectively. The R(2) values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. CONCLUSIONS: This work demonstrated the utility of regional and organ-specific CTDI(vol) as normalization factors when using TCM. It was demonstrated that CTDI(vol),global is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI(vol) descriptors that account for local variations in scanner output present when TCM is employed.


Asunto(s)
Modelos Biológicos , Dosis de Radiación , Tomografía Computarizada por Rayos X , Adulto , Estudios de Factibilidad , Femenino , Humanos , Masculino , Método de Montecarlo
5.
Health Phys ; 101(6): 693-702, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22048487

RESUMEN

The cancer risk due to chronic transuranic intakes is properly calculated using an integration over multiple years of intake of the annual effective dose rates arising each year following an intake multiplied by age-dependent risk functions for the year during which the dose is actually received. Approximate computations of risk involving sums of the products of committed effective dose and the age-dependent risk functions for each year of intake indicate the appropriateness of the committed effective dose as a surrogate quantity for risk when applied to different circumstances. The assumptions that all dose is received at the time of intake with committed effective dose and that risk is uniform over a range of ages both lead to a misuse of the available age-dependent risk functions and thus contribute to a divergence from the true risk associated with an intake over multiple years. Comparison of the correctly integrated risk functions with the approximations gives insights into how the current committed effective dose models used for regulatory purposes are not necessarily indicative of the risk for chronic intakes of radionuclides with long biological and radiological half-lives. A summary and comparison of such computations for transuranic intakes was prepared for the ingestion of water and the inhalation of different particle sizes by both males and females. Risk results for committed effective dose consistently overestimated risks by approximately 100% for all transuranics for ingestion models and approximately 75% for all transuranics for Type M inhalation models considering age-dependent risk models. For constant risk as a function of age, the committed effective dose integration underestimated the actual risk situation by nearly 60% for ingestion and 50% for Type M inhalation during the first 20 y.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Neoplasias Inducidas por Radiación/etiología , Radioisótopos/efectos adversos , Medición de Riesgo/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Ingestión de Líquidos , Femenino , Regulación Gubernamental , Humanos , Lactante , Recién Nacido , Inhalación , Masculino , Persona de Mediana Edad , Dosis de Radiación , Factores de Tiempo , Estados Unidos , United States Environmental Protection Agency/legislación & jurisprudencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA