Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(20): 10830-10841, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31602462

RESUMEN

Identifying and validating intermolecular covariation between proteins and their DNA-binding sites can provide insights into mechanisms that regulate selectivity and starting points for engineering new specificity. LAGLIDADG homing endonucleases (meganucleases) can be engineered to bind non-native target sites for gene-editing applications, but not all redesigns successfully reprogram specificity. To gain a global overview of residues that influence meganuclease specificity, we used information theory to identify protein-DNA covariation. Directed evolution experiments of one predicted pair, 227/+3, revealed variants with surprising shifts in I-OnuI substrate preference at the central 4 bases where cleavage occurs. Structural studies showed significant remodeling distant from the covarying position, including restructuring of an inter-hairpin loop, DNA distortions near the scissile phosphates, and new base-specific contacts. Our findings are consistent with a model whereby the functional impacts of covariation can be indirectly propagated to neighboring residues outside of direct contact range, allowing meganucleases to adapt to target site variation and indirectly expand the sequence space accessible for cleavage. We suggest that some engineered meganucleases may have unexpected cleavage profiles that were not rationally incorporated during the design process.


Asunto(s)
ADN/metabolismo , Endonucleasas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , ADN/química , Endonucleasas/química , Evolución Molecular , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Especificidad por Sustrato
2.
Nucleic Acids Res ; 46(22): 11990-12007, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30357419

RESUMEN

LAGLIDADG homing endonucleases (meganucleases) are site-specific mobile endonucleases that can be adapted for genome-editing applications. However, one problem when reprogramming meganucleases on non-native substrates is indirect readout of DNA shape and flexibility at the central 4 bases where cleavage occurs. To understand how the meganuclease active site regulates DNA cleavage, we used functional selections and deep sequencing to profile the fitness landscape of 1600 I-LtrI and I-OnuI active site variants individually challenged with 67 substrates with central 4 base substitutions. The wild-type active site was not optimal for cleavage on many substrates, including the native I-LtrI and I-OnuI targets. Novel combinations of active site residues not observed in known meganucleases supported activity on substrates poorly cleaved by the wild-type enzymes. Strikingly, combinations of E or D substitutions in the two metal-binding residues greatly influenced cleavage activity, and E184D variants had a broadened cleavage profile. Analyses of I-LtrI E184D and the wild-type proteins co-crystallized with the non-cognate AACC central 4 sequence revealed structural differences that correlated with kinetic constants for cleavage of individual DNA strands. Optimizing meganuclease active sites to enhance cleavage of non-native central 4 target sites is a straightforward addition to engineering workflows that will expand genome-editing applications.


Asunto(s)
ADN/química , Endonucleasas/química , Ingeniería de Proteínas , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , División del ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Termodinámica
3.
Proc Natl Acad Sci U S A ; 111(23): E2376-83, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912189

RESUMEN

The active sites of enzymes consist of residues necessary for catalysis and structurally important noncatalytic residues that together maintain the architecture and function of the active site. Examples of evolutionary interactions between catalytic and noncatalytic residues have been difficult to define and experimentally validate due to a general intolerance of these residues to substitution. Here, using computational methods to predict coevolving residues, we identify a network of positions consisting of two catalytic metal-binding residues and two adjacent noncatalytic residues in LAGLIDADG homing endonucleases (LHEs). Distinct combinations of the four residues in the network map to distinct LHE subfamilies, with a striking distribution of the metal-binding Asp (D) and Glu (E) residues. Mutation of these four positions in three LHEs--I-LtrI, I-OnuI, and I-HjeMI--indicate that the combinations of residues tolerated are specific to each enzyme. Kinetic analyses under single-turnover conditions revealed that I-LtrI activity could be modulated over an ∼100-fold range by mutation of residues in the coevolving network. I-LtrI catalytic site variants with low activity could be rescued by compensatory mutations at adjacent noncatalytic sites that restore an optimal coevolving network and vice versa. Our results demonstrate that LHE activity is constrained by an evolutionary barrier of residues with strong context-dependent effects. Creation of optimal coevolving active-site networks is therefore an important consideration in engineering of LHEs and other enzymes.


Asunto(s)
Dominio Catalítico/genética , Endonucleasas/genética , Evolución Molecular , Mutación , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Biocatálisis , Endonucleasas/química , Endonucleasas/metabolismo , Ácido Glutámico/química , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Modelos Genéticos , Modelos Moleculares , Filogenia , Estructura Terciaria de Proteína
4.
Microbiome ; 2: 15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910773

RESUMEN

BACKGROUND: Experimental designs that take advantage of high-throughput sequencing to generate datasets include RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), sequencing of 16S rRNA gene fragments, metagenomic analysis and selective growth experiments. In each case the underlying data are similar and are composed of counts of sequencing reads mapped to a large number of features in each sample. Despite this underlying similarity, the data analysis methods used for these experimental designs are all different, and do not translate across experiments. Alternative methods have been developed in the physical and geological sciences that treat similar data as compositions. Compositional data analysis methods transform the data to relative abundances with the result that the analyses are more robust and reproducible. RESULTS: Data from an in vitro selective growth experiment, an RNA-seq experiment and the Human Microbiome Project 16S rRNA gene abundance dataset were examined by ALDEx2, a compositional data analysis tool that uses Bayesian methods to infer technical and statistical error. The ALDEx2 approach is shown to be suitable for all three types of data: it correctly identifies both the direction and differential abundance of features in the differential growth experiment, it identifies a substantially similar set of differentially expressed genes in the RNA-seq dataset as the leading tools and it identifies as differential the taxa that distinguish the tongue dorsum and buccal mucosa in the Human Microbiome Project dataset. The design of ALDEx2 reduces the number of false positive identifications that result from datasets composed of many features in few samples. CONCLUSION: Statistical analysis of high-throughput sequencing datasets composed of per feature counts showed that the ALDEx2 R package is a simple and robust tool, which can be applied to RNA-seq, 16S rRNA gene sequencing and differential growth datasets, and by extension to other techniques that use a similar approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA