Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 368(3): 514-523, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30606762

RESUMEN

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that represent an effective class of insulin-sensitizing agents; however, clinical use is associated with weight gain and peripheral edema. To elucidate the role of PPARγ expression in endothelial cells (ECs) in these side effects, EC-targeted PPARγ knockout (Pparg ΔEC) mice were placed on a high-fat diet to promote PPARγ agonist-induced plasma volume expansion, and then treated with the TZD rosiglitazone. Compared with Pparg-floxed wild-type control (Pparg f/f) mice, Pparg ΔEC treated with rosiglitazone are resistant to an increase in extracellular fluid, water content in epididymal and inguinal white adipose tissue, and plasma volume expansion. Interestingly, histologic assessment confirmed significant rosiglitazone-mediated capillary dilation within white adipose tissue of Pparg f/f mice, but not Pparg ΔEC mice. Analysis of ECs isolated from untreated mice in both strains suggested the involvement of changes in endothelial junction formation. Specifically, compared with cells from Pparg f/f mice, Pparg ΔEC cells had a 15-fold increase in focal adhesion kinase, critically important in EC focal adhesions, and >3-fold significant increase in vascular endothelial cadherin, the main component of focal adhesions. Together, these results indicate that rosiglitazone has direct effects on the endothelium via PPARγ activation and point toward a critical role for PPARγ in ECs during rosiglitazone-mediated plasma volume expansion.


Asunto(s)
Tejido Adiposo/metabolismo , Células Endoteliales/metabolismo , Hipoglucemiantes/farmacología , PPAR gamma/deficiencia , Rosiglitazona/farmacología , Remodelación Vascular/fisiología , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/efectos de los fármacos , Animales , Células Endoteliales/efectos de los fármacos , Eliminación de Gen , Masculino , Ratones , Ratones Transgénicos , PPAR gamma/genética , Volumen Plasmático/efectos de los fármacos , Volumen Plasmático/fisiología , Remodelación Vascular/efectos de los fármacos
2.
J Lipid Res ; 54(10): 2615-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23828778

RESUMEN

Hepatic glucose overproduction is a major characteristic of type 2 diabetes. Because glucagon is a key regulator for glucose homeostasis, antagonizing the glucagon receptor (GCGR) is a possible therapeutic strategy for the treatment of diabetes mellitus. To study the effect of hepatic GCGR inhibition on the regulation of lipid metabolism, we generated siRNA-mediated GCGR knockdown (si-GCGR) in the db/db mouse. The hepatic knockdown of GCGR markedly reduced plasma glucose levels; however, total plasma cholesterol was increased. The detailed lipid analysis showed an increase in the LDL fraction, and no change in VLDL HDL fractions. Further studies showed that the increase in LDL was the result of over-expression of hepatic lipogenic genes and elevated de novo lipid synthesis. Inhibition of hepatic glucagon signaling via siRNA-mediated GCGR knockdown had an effect on both glucose and lipid metabolism in db/db mice.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Lipogénesis , Hígado/metabolismo , Receptores de Glucagón/genética , Animales , Glucemia , Colesterol/sangre , Diabetes Mellitus Tipo 2/terapia , Expresión Génica , Técnicas de Silenciamiento del Gen , Lipoproteínas LDL/sangre , Masculino , Ratones , Ratones Obesos , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores de Glucagón/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
3.
Eur J Pharmacol ; 584(1): 192-201, 2008 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-18346728

RESUMEN

The use of the thiazolidinedione insulin sensitizers rosiglitazone and pioglitazone for the treatment of type 2 diabetes mellitus in recent years has proven to be effective in helping patients resume normal glycemic control. However, their use is often associated with undesirable side effects including peripheral edema, congestive heart failure and weight gain. Here, we report the identification and characterization of a novel selective PPARgamma modulator, SPPARgammaM5 ((2S)-2-(2-chloro-5-{[3-(4-chlorophenoxy)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl} phenoxy)propionic acid), which has notable insulin sensitizing properties and a superior tolerability profile to that of rosiglitazone. SPPARgammaM5 is a potent ligand of human PPARgamma with high selectivity versus PPARalpha or PPARdelta in receptor competitive binding assays. In cell-based transcriptional activation assays, SPPARgammaM5 was a potent partial agonist of human PPARgamma in comparison to the PPARgamma full agonist rosiglitazone. Compared to rosiglitazone or the PPARgamma full agonist COOH (2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid), SPPARgammaM5 induced an attenuated PPARgamma-regulated gene expression profile in fully differentiated 3T3-L1 adipocytes and white adipose tissue of chronically treated db/db mice. SPPARgammaM5 treatment also reduced the insulin resistance index by homeostasis model assessment (HOMA), suggesting an improvement in insulin resistance in these db/db mice. Treatment of obese Zucker rats with either rosiglitazone or SPPARgammaM5 resulted in an improvement in selected parameters that serve as surrogate indicators of insulin resistance and hyperlipidemia. However, unlike rosiglitazone, SPPARgammaM5 did not cause significant fluid retention or cardiac hypertrophy in these rats. Thus, compounds such as SPPARgammaM5 may offer beneficial effects on glycemic control with significantly attenuated adverse effects.


Asunto(s)
Acetatos/farmacología , Enfermedades Cardiovasculares/inducido químicamente , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Indoles/farmacología , Resistencia a la Insulina , PPAR gamma/efectos de los fármacos , Propionatos/farmacología , Tiazolidinedionas/farmacología , Células 3T3-L1 , Acetatos/efectos adversos , Acetatos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Células COS , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Agonismo Parcial de Drogas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hemodilución , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/metabolismo , Indoles/efectos adversos , Indoles/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo , PPAR delta/efectos de los fármacos , PPAR delta/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Propionatos/efectos adversos , Propionatos/metabolismo , Unión Proteica , Ratas , Ratas Zucker , Rosiglitazona , Tiazolidinedionas/efectos adversos , Tiazolidinedionas/metabolismo , Activación Transcripcional/efectos de los fármacos , Transfección , Equilibrio Hidroelectrolítico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA