Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nucleic Acids Res ; 45(16): 9611-9624, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934496

RESUMEN

Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ∼100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ∼3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.


Asunto(s)
Girasa de ADN/metabolismo , Topoisomerasa de ADN IV/metabolismo , ADN Superhelicoidal/química , ADN Superhelicoidal/metabolismo , Bacillus anthracis/enzimología , Girasa de ADN/química , Topoisomerasa de ADN IV/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
2.
Biochemistry ; 56(32): 4191-4200, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708938

RESUMEN

Gyrase appears to be the primary cellular target for quinolone antibacterials in multiple pathogenic bacteria, including Bacillus anthracis, the causative agent of anthrax. Given the significance of this type II topoisomerase as a drug target, it is critical to understand how quinolones interact with gyrase and how specific mutations lead to resistance. However, these important issues have yet to be addressed for a canonical gyrase. Therefore, we utilized a mechanistic approach to characterize interactions of quinolones with wild-type B. anthracis gyrase and enzymes containing the most common quinolone resistance mutations. Results indicate that clinically relevant quinolones interact with the enzyme through a water-metal ion bridge in which a noncatalytic divalent metal ion is chelated by the C3/C4 keto acid of the drug. In contrast to other bacterial type II topoisomerases that have been examined, the bridge is anchored to gyrase primarily through a single residue (Ser85). Substitution of groups at the quinolone C7 and C8 positions generated drugs that were less dependent on the water-metal ion bridge and overcame resistance. Thus, by analyzing the interactions of drugs with type II topoisomerases from individual bacteria, it may be possible to identify specific quinolone derivatives that can overcome target-mediated resistance in important pathogenic species.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/química , ADN-Topoisomerasas de Tipo II/química , Farmacorresistencia Bacteriana , Quinolonas/química , Inhibidores de Topoisomerasa II/química , Bacillus anthracis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo
3.
Biochemistry ; 54(5): 1278-86, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25586498

RESUMEN

CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. On the basis of the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.


Asunto(s)
Bacillus anthracis/enzimología , Proteínas Bacterianas/química , ADN-Topoisomerasas de Tipo II/química , Fluoroquinolonas/química , Inhibidores de Topoisomerasa II/química , Bacillus anthracis/genética , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Fluoroquinolonas/farmacología , Humanos , Mutación , Inhibidores de Topoisomerasa II/farmacología
4.
Nucleic Acids Res ; 41(8): 4628-39, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23460203

RESUMEN

Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlA(E85K), GrlA(S81F/E85K), GrlA(E85A), GrlA(S81F/E85A) and GrlA(S81F) Bacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg(2+) concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein-quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance.


Asunto(s)
Antibacterianos/química , Topoisomerasa de ADN IV/química , Topoisomerasa de ADN IV/efectos de los fármacos , Metales/química , Quinolonas/química , Antibacterianos/farmacología , Bacillus anthracis/enzimología , Cationes Bivalentes/química , Ciprofloxacina/química , Ciprofloxacina/farmacología , ADN/metabolismo , División del ADN/efectos de los fármacos , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , Resistencia a Medicamentos , Magnesio/química , Mutación , Quinazolinonas/química , Quinazolinonas/farmacología , Agua/química
5.
J Struct Biol ; 186(1): 181-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24607412

RESUMEN

Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.


Asunto(s)
Bacillus anthracis/ultraestructura , Proteínas Bacterianas/ultraestructura , Glicoproteínas de Membrana/ultraestructura , Bacillus anthracis/fisiología , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Crioultramicrotomía , Análisis de Fourier , Técnicas de Inactivación de Genes , Glicoproteínas de Membrana/genética , Esporas Bacterianas/ultraestructura , Difracción de Rayos X
6.
Antimicrob Agents Chemother ; 58(12): 7182-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25246407

RESUMEN

The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV.


Asunto(s)
Bacillus anthracis/química , Topoisomerasa de ADN IV/química , Manganeso/química , Mutación , Níquel/química , Subunidades de Proteína/química , Agua/química , Alanina/química , Alanina/genética , Antibacterianos/química , Bacillus anthracis/enzimología , Cationes Bivalentes , Ciprofloxacina/química , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/genética , ADN Bacteriano/química , Farmacorresistencia Bacteriana/genética , Fluoroquinolonas/química , Modelos Moleculares , Moxifloxacino , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Inhibidores de Topoisomerasa/química , Valina/química , Valina/genética
7.
Biochemistry ; 51(1): 370-81, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22126453

RESUMEN

Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.


Asunto(s)
Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/enzimología , Topoisomerasa de ADN IV/química , Farmacorresistencia Bacteriana , Quinolonas/química , Bacillus anthracis/genética , Girasa de ADN/genética , Topoisomerasa de ADN IV/antagonistas & inhibidores , Interacciones Farmacológicas/genética , Farmacorresistencia Bacteriana/genética , Mutagénesis Sitio-Dirigida , Quinolonas/farmacología
8.
Mol Microbiol ; 76(6): 1527-38, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20444088

RESUMEN

The outermost layer of the Bacillus anthracis spore, the exosporium, is composed of a paracrystalline basal layer and an external hair-like nap. The nap is formed from a single collagen-like glycoprotein, while the basal layer contains many different proteins, including a 186-amino acid protein called ExsB. In this study, we discovered that ExsB is unusually highly phosphorylated, with at least 14 of its 19 threonine residues modified. The phosphorylated threonines are included in seven contiguous approximately 12-residue imperfect repeats, which presumably contain kinase recognition sequences. We demonstrated that a B. anthracis DeltaexsB mutant unable to synthesize ExsB produced spores with an exosporium that was readily sloughed, indicating that ExsB was required for stable exosporium attachment. This unstable exosporium also lacked the enzyme alanine racemase, which is normally tightly associated with the exosporium. Additionally, purified DeltaexsB spores lacking a visible exosporium were devoid of most exosporium proteins but, surprisingly, retained the putative exosporium proteins BxpC and CotB-1. Finally, we showed that transcription of the exsB gene occurred only during the late stages of sporulation, and we used an active and phosphorylated ExsB-EGFP fusion protein to monitor ExsB localization to wild-type and DeltabxpB mutant exosporia.


Asunto(s)
Bacillus anthracis/química , Bacillus anthracis/metabolismo , Proteínas Bacterianas/análisis , Pared Celular/química , Pared Celular/metabolismo , Esporas Bacterianas/química , Esporas Bacterianas/metabolismo , Alanina Racemasa/análisis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Eliminación de Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes de Fusión/análisis , Treonina/metabolismo
9.
J Bacteriol ; 192(19): 5053-62, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20675481

RESUMEN

Bacillus anthracis spores, the etiological agents of anthrax, possess a loosely fitting outer layer called the exosporium that is composed of a basal layer and an external hairlike nap. The filaments of the nap are formed by trimers of the collagenlike glycoprotein BclA. Multiple pentasaccharide and trisaccharide side chains are O linked to BclA. The nonreducing terminal residue of the pentasaccharide side chain is the unusual sugar anthrose. A plausible biosynthetic pathway for anthrose biosynthesis has been proposed, and an antABCD operon encoding four putative anthrose biosynthetic enzymes has been identified. In this study, we genetically and biochemically characterized the activities of these enzymes. We also used mutant B. anthracis strains to determine the effects on BclA glycosylation of individually inactivating the genes of the anthrose operon. The inactivation of antA resulted in the appearance of BclA pentasaccharides containing anthrose analogs possessing shorter side chains linked to the amino group of the sugar. The inactivation of antB resulted in BclA being replaced with only trisaccharides, suggesting that the enzyme encoded by the gene is a dTDP-ß-L-rhamnose α-1,3-L-rhamnosyl transferase that attaches the fourth residue of the pentasaccharide side chain. The inactivation of antC and antD resulted in the disappearance of BclA pentasaccharides and the appearance of a tetrasaccharide lacking anthrose. These phenotypes are entirely consistent with the proposed roles for the antABCD-encoded enzymes in anthrose biosynthesis. Purified AntA was then shown to exhibit ß-methylcrotonyl-coenzyme A (CoA) hydratase activity, as we predicted. Similarly, we confirmed that purified AntC had aminotransferase activity and that purified AntD displayed N-acyltransferase activity.


Asunto(s)
Amino Azúcares/biosíntesis , Amino Azúcares/genética , Bacillus anthracis/enzimología , Bacillus anthracis/genética , Proteínas Bacterianas/metabolismo , Desoxiglucosa/análogos & derivados , Operón/fisiología , Proteínas Bacterianas/genética , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Desoxiglucosa/biosíntesis , Desoxiglucosa/genética , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Oligosacáridos/química , Oligosacáridos/metabolismo , Operón/genética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
10.
J Bacteriol ; 191(4): 1303-10, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19074397

RESUMEN

Spores of Bacillus anthracis are enclosed by an exosporium composed of a basal layer and an external hair-like nap. The nap is apparently formed by a single glycoprotein, while the basal layer contains many different structural proteins and several enzymes. One of the enzymes is Alr, an alanine racemase capable of converting the spore germinant l-alanine to the germination inhibitor d-alanine. Unlike other characterized exosporium proteins, Alr is nonuniformly distributed in the exosporium and might have a second spore location. In this study, we demonstrated that expression of the alr gene, which encodes Alr, is restricted to sporulating cells and that the bulk of alr transcription and Alr synthesis occurs during the late stages of sporulation. We also mapped two alr promoters that are differentially active during sporulation and might be involved in the atypical localization of Alr. Finally, we constructed a Deltaalr mutant of B. anthracis that lacks Alr and examined the properties of the spores produced by this strain. Mature Deltaalr spores germinate more efficiently in the presence of l-alanine, presumably because of their inability to convert exogenous l-alanine to d-alanine, but they respond normally to other germinants. Surprisingly, the production of mature spores by the Deltaalr mutant is defective because approximately one-half of the nascent spores germinate and lose their resistance properties before they are released from the mother cell. This phenotype suggests that an important function of Alr is to produce D-alanine during the late stages of sporulation to suppress premature germination of the developing spore.


Asunto(s)
Alanina Racemasa/metabolismo , Bacillus anthracis/enzimología , Bacillus anthracis/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Alanina Racemasa/genética , Bacillus anthracis/citología , Ciclo Celular , Mutación , Regiones Promotoras Genéticas , Esporas Bacterianas/enzimología , Esporas Bacterianas/fisiología
11.
J Bacteriol ; 190(7): 2350-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18245286

RESUMEN

The exosporium of Bacillus anthracis spores consists of a basal layer and an external hair-like nap. The nap is composed primarily of the glycoprotein BclA, which contains a collagen-like region with multiple copies of a pentasaccharide side chain. This oligosaccharide possesses an unusual terminal sugar called anthrose, followed by three rhamnose residues and a protein-bound N-acetylgalactosamine. Based on the structure of anthrose, we proposed an enzymatic pathway for its biosynthesis. Examination of the B. anthracis genome revealed six contiguous genes that could encode the predicted anthrose biosynthetic enzymes. These genes are transcribed in the same direction and appear to form two operons. We introduced mutations into the B. anthracis chromosome that either delete the promoter of the putative upstream, four-gene operon or delete selected genes in both putative operons. Spores produced by strains carrying mutations in the upstream operon completely lacked or contained much less anthrose, indicating that this operon is required for anthrose biosynthesis. In contrast, inactivation of the downstream, two-gene operon did not alter anthrose content. Additional experiments confirmed the organization of the anthrose operon and indicated that it is transcribed from a sigma(E)-specific promoter. Finally, we demonstrated that anthrose biosynthesis is not restricted to B. anthracis as previously suggested.


Asunto(s)
Amino Azúcares/biosíntesis , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Desoxiglucosa/análogos & derivados , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Northern Blotting , Cromatografía de Gases , Desoxiglucosa/biosíntesis , Genes Bacterianos , Prueba de Complementación Genética , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Transcripción Genética
12.
Hum Gene Ther ; 17(6): 669-82, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16776575

RESUMEN

Adenoviruses (Ad) have been extensively studied as gene delivery vectors in gene therapy and as vaccine carriers. The cell-mediated cytotoxicity induced by Ad is of great interest in both applications. However, the mechanism underlying Ad-specific cytotoxic T lymphocyte (CTL) generation and effector function remains unclear. In this study, we used a novel MHC class I tetramer and an in vivo CTL assay to examine the role of CD28, perforin, Fas ligand (FasL), and TNF-alpha in the generation and function of Ad-specific CTLs in vivo. During the primary response, there was a significant defect in both the generation and in vivo effector function of Ad-specific CTLs in CD28-/- mice, but not in CD4+ T cell-depleted mice or CD4-/- mice. The relative role of CTL effector molecules was assayed by in vivo CTL assay in perforin- or FasL-mutant mice, using donor cells from Fas-deficient or TNFR1/TNFR2-deficient mice. The results indicated that the in vivo CTL activity is mediated mainly by perforin. In the absence of perforin, production of FasL, but not TNF-alpha, by the CTLs results in lower level Ad-specific killing of target cells. These results provide important implications concerning the development of safe and effective Ad vectors for gene therapy and vaccines.


Asunto(s)
Adenoviridae/inmunología , Antígenos CD28/genética , Vectores Genéticos/inmunología , Glicoproteínas de Membrana/genética , Linfocitos T Citotóxicos/inmunología , Factores de Necrosis Tumoral/genética , Adenoviridae/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Proteína Ligando Fas , Femenino , Vectores Genéticos/administración & dosificación , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina , Proteínas Citotóxicas Formadoras de Poros , Factor de Necrosis Tumoral alfa/metabolismo
13.
Front Biosci ; 11: 1998-2006, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16368574

RESUMEN

MicroRNAs (miRNAs) have been suggested as suppressors of numerous target genes in human cells. In this report, we present gene chip array data indicating that in the absence of miRNA sequences, complete human introns are similarly capable of coordinating expression of large numbers of gene products at spatially diverse sites within the genome. The expression of selected intronic sequences (6a, 14b and 23) derived from the cystic fibrosis transmembrane conductance regulator (CFTR) gene caused extensive and specific transcriptional changes in epithelial cells (HeLa) that do not normally express this gene product. Each intron initiated a distinctive pattern of gene transcription. Affected genes such as FOXF1, sucrase-isomaltase, collagen, interferon, complement and thrombospondin 1 have previously been linked to CFTR function or are known to contribute to the related processes of epithelial differentiation and repair. A possible regulatory function of this nature has not been demonstrated previously for non-coding sequences within eukaryotic DNA. The results are consistent with the observation that splicesomal introns are found only in eukaryotic organisms and that the number of introns increases with phylogenetic complexity.


Asunto(s)
Regulación de la Expresión Génica , Intrones , MicroARNs/genética , Diferenciación Celular , Línea Celular , Biología Computacional , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ADN/química , Exones , Genoma , Células HeLa , Humanos , Lentivirus/genética , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Transducción de Señal , Empalmosomas/metabolismo , Transcripción Genética , Cicatrización de Heridas
14.
Cancer Res ; 64(18): 6610-5, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15374975

RESUMEN

Escherichia coli purine nucleoside phosphorylase (PNP) expressed in tumors converts relatively nontoxic prodrugs into membrane-permeant cytotoxic compounds with high bystander activity. In the present study, we examined tumor regressions resulting from treatment with E. coli PNP and fludarabine phosphate (F-araAMP), a clinically approved compound used in the treatment of hematologic malignancies. We tested bystander killing with an adenoviral construct expressing E. coli PNP and then more formally examined thresholds for the bystander effect, using both MuLv and lentiviral vectoring. Because of the importance of understanding the mechanism of bystander action and the limits to this anticancer strategy, we also evaluated in vivo variables related to the expression of E. coli PNP (level of E. coli PNP activity in tumors, ectopic expression in liver, percentage of tumor cells transduced in situ, and accumulation of active metabolites in tumors). Our results indicate that F-araAMP confers excellent in vivo dose-dependent inhibition of bystander tumor cells, including strong responses in subcutaneous human glioma xenografts when 95 to 97.5% of the tumor mass is composed of bystander cells. These findings define levels of E. coli PNP expression necessary for antitumor activity with F-araAMP and demonstrate new potential for a clinically approved compound in solid tumor therapy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Escherichia coli/genética , Terapia Genética/métodos , Purina-Nucleósido Fosforilasa/genética , Fosfato de Vidarabina/análogos & derivados , Fosfato de Vidarabina/farmacología , Adenoviridae/genética , Animales , Antimetabolitos Antineoplásicos/farmacocinética , Línea Celular Tumoral , Terapia Combinada , Relación Dosis-Respuesta a Droga , Escherichia coli/enzimología , Vectores Genéticos/genética , Glioma/tratamiento farmacológico , Glioma/enzimología , Glioma/genética , Humanos , Lentivirus/genética , Ratones , Ratones Desnudos , Virus de la Leucemia Murina de Moloney/genética , Purina-Nucleósido Fosforilasa/biosíntesis , Purina-Nucleósido Fosforilasa/metabolismo , Transfección/métodos , Fosfato de Vidarabina/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Viral Immunol ; 16(2): 169-82, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12828868

RESUMEN

Vaccines that stimulate both cellular and humoral immunity will probably be needed to control many infectious diseases. Previously, our laboratory generated a vaccine vector that uses poliovirus genomes (replicons) in which the capsid genes have been replaced by foreign proteins. In the current study, we have evaluated the immune responses induced by immunization using poliovirus replicons encoding green fluorescent protein (GFP). Although intramuscular administration of replicons resulted in GFP expression in the muscle, the levels of anti-GFP antibodies in serum were low compared to those of mice immunized with soluble, recombinant GFP (rGFP). Intramuscular booster immunization with rGFP in animals primed with replicons encoding GFP resulted in production of both serum IgG1 and IgG2a GFP-specific antibodies. The cells isolated from spleens of animals primed with replicons and boosted with rGFP secreted IFN-gamma after in vitro stimulation with rGFP. Intramuscular immunization of animals with a single dose of replicons encoding GFP followed by two intranasal applications of rGFP resulted in serum GFP-specific IgG1 and IgG2a isotypes, consistent with induction of both humoral and cellular responses. The results of this study establish that immunization with replicons followed by boost with soluble antigen, even at a different site, can generate a more diverse immune response compared with immunization regimen using soluble antigen alone. This strategy could be exploited for the development of new vaccine approaches against infectious diseases.


Asunto(s)
Inmunización , Proteínas Luminiscentes/inmunología , Proteínas de la Membrana , Poliovirus/inmunología , Replicón/inmunología , Administración Intranasal , Animales , Anticuerpos Antivirales/sangre , Antígenos/administración & dosificación , Antígenos/genética , Antígenos/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Proteínas Fluorescentes Verdes , Humanos , Inmunización Secundaria , Inmunoglobulina G/sangre , Inyecciones Intramusculares , Interferón gamma/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Poliovirus/genética , Receptores Virales/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Replicón/genética , Solubilidad , Bazo/citología , Bazo/inmunología
16.
ACS Chem Biol ; 8(12): 2660-8, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24047414

RESUMEN

Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.


Asunto(s)
Antibacterianos/química , Antígenos de Neoplasias/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Quinazolinonas/química , Quinolonas/química , Antibacterianos/farmacología , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Bacillus anthracis/química , Bacillus anthracis/efectos de los fármacos , Bacillus anthracis/enzimología , Bacillus anthracis/genética , Cationes Bivalentes , División del ADN/efectos de los fármacos , Topoisomerasa de ADN IV/química , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Cinética , Magnesio/química , Magnesio/metabolismo , Mutación , Quinazolinonas/farmacología , Quinolonas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA