Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 536(7614): 54-7, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27362221

RESUMEN

The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn's sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.

2.
Nature ; 528(7581): 241-4, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26659184

RESUMEN

Studies of the dwarf planet (1) Ceres using ground-based and orbiting telescopes have concluded that its closest meteoritic analogues are the volatile-rich CI and CM carbonaceous chondrites. Water in clay minerals, ammoniated phyllosilicates, or a mixture of Mg(OH)2 (brucite), Mg2CO3 and iron-rich serpentine have all been proposed to exist on the surface. In particular, brucite has been suggested from analysis of the mid-infrared spectrum of Ceres. But the lack of spectral data across telluric absorption bands in the wavelength region 2.5 to 2.9 micrometres--where the OH stretching vibration and the H2O bending overtone are found--has precluded definitive identifications. In addition, water vapour around Ceres has recently been reported, possibly originating from localized sources. Here we report spectra of Ceres from 0.4 to 5 micrometres acquired at distances from ~82,000 to 4,300 kilometres from the surface. Our measurements indicate widespread ammoniated phyllosilicates across the surface, but no detectable water ice. Ammonia, accreted either as organic matter or as ice, may have reacted with phyllosilicates on Ceres during differentiation. This suggests that material from the outer Solar System was incorporated into Ceres, either during its formation at great heliocentric distance or by incorporation of material transported into the main asteroid belt.

3.
Nature ; 504(7478): 122-5, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24196707

RESUMEN

Olivine is a major component of the mantle of differentiated bodies, including Earth. Howardite, eucrite and diogenite (HED) meteorites represent regolith, basaltic-crust, lower-crust and possibly ultramafic-mantle samples of asteroid Vesta, which is the lone surviving, large, differentiated, basaltic rocky protoplanet in the Solar System. Only a few of these meteorites, the orthopyroxene-rich diogenites, contain olivine, typically with a concentration of less than 25 per cent by volume. Olivine was tentatively identified on Vesta, on the basis of spectral and colour data, but other observations did not confirm its presence. Here we report that olivine is indeed present locally on Vesta's surface but that, unexpectedly, it has not been found within the deep, south-pole basins, which are thought to be excavated mantle rocks. Instead, it occurs as near-surface materials in the northern hemisphere. Unlike the meteorites, the olivine-rich (more than 50 per cent by volume) material is not associated with diogenite but seems to be mixed with howardite, the most common surface material. Olivine is exposed in crater walls and in ejecta scattered diffusely over a broad area. The size of the olivine exposures and the absence of associated diogenite favour a mantle source, but the exposures are located far from the deep impact basins. The amount and distribution of observed olivine-rich material suggest a complex evolutionary history for Vesta.

4.
Nature ; 491(7422): 83-6, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23128228

RESUMEN

Localized dark and bright materials, often with extremely different albedos, were recently found on Vesta's surface. The range of albedos is among the largest observed on Solar System rocky bodies. These dark materials, often associated with craters, appear in ejecta and crater walls, and their pyroxene absorption strengths are correlated with material brightness. It was tentatively suggested that the dark material on Vesta could be either exogenic, from carbon-rich, low-velocity impactors, or endogenic, from freshly exposed mafic material or impact melt, created or exposed by impacts. Here we report Vesta spectra and images and use them to derive and interpret the properties of the 'pure' dark and bright materials. We argue that the dark material is mainly from infall of hydrated carbonaceous material (like that found in a major class of meteorites and some comet surfaces), whereas the bright material is the uncontaminated indigenous Vesta basaltic soil. Dark material from low-albedo impactors is diffused over time through the Vestan regolith by impact mixing, creating broader, diffuse darker regions and finally Vesta's background surface material. This is consistent with howardite-eucrite-diogenite meteorites coming from Vesta.

5.
Nature ; 443(7107): E1-2; discussion E2, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16957684

RESUMEN

The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.

6.
Nature ; 436(7050): 504-9, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16007077

RESUMEN

Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.

7.
Science ; 259(5103): 1890-2, 1993 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-17836249

RESUMEN

The SNC (shergottite-nakhlite-chassignite) meteorites, thought to be igneous rocks from Mars, contain melt inclusions trapped at depth in early-formed crystals. Determination of the pre-eruptive water contents of SNC parental magmas from calculations of the solidification histories of these amphibole-bearing inclusions indicates that martian magmas commonly contained 1.4 percent water by weight. When combined with an estimate of the volume of igneous materials on Mars, this information suggests that the total amount of water outgassed since 3.9 billion years ago corresponds to global depths on the order of 200 meters. This value is significantly higher than previous geochemical estimates but lower than estimates based on erosion by floods. These results imply a wetter Mars interior than has been previously thought and support suggestions of significant outgassing before formation of a stable crust or heterogeneous accretion of a veneer of cometary matter.

8.
Science ; 204(4398): 1201-3, 1979 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17772424

RESUMEN

The unique achondrite ALHA 77005 appears to be related to shergottite meteorites through igneous differentiation and may have affinities with mafic rocks on the earth.

9.
Science ; 278(5344): 1771-4, 1997 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-9388173

RESUMEN

The alpha proton x-ray spectrometer (APXS) on board the rover of the Mars Pathfinder mission measured the chemical composition of six soils and five rocks at the Ares Vallis landing site. The soil analyses show similarity to those determined by the Viking missions. The analyzed rocks were partially covered by dust but otherwise compositionally similar to each other. They are unexpectedly high in silica and potassium, but low in magnesium compared to martian soils and martian meteorites. The analyzed rocks are similar in composition to terrestrial andesites and close to the mean composition of Earth's crust. Addition of a mafic component and reaction products of volcanic gases to the local rock material is necessary to explain the soil composition.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Óxidos/análisis , Aluminio/análisis , Sedimentos Geológicos/química , Hierro/análisis , Magnesio/análisis , Meteoroides , Potasio/análisis , Dióxido de Silicio/análisis
10.
Science ; 355(6320): 55-59, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27980087

RESUMEN

The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA's Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres' carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

11.
Science ; 355(6326): 719-722, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28209893

RESUMEN

Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

12.
Science ; 353(6303)2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27701086

RESUMEN

The dwarf planet Ceres is known to host phyllosilicate minerals at its surface, but their distribution and origin have not previously been determined. We used the spectrometer onboard the Dawn spacecraft to map their spatial distribution on the basis of diagnostic absorption features in the visible and near-infrared spectral range (0.25 to 5.0 micrometers). We found that magnesium- and ammonium-bearing minerals are ubiquitous across the surface. Variations in the strength of the absorption features are spatially correlated and indicate considerable variability in the relative abundance of the phyllosilicates, although their composition is fairly uniform. These data, along with the distinctive spectral properties of Ceres relative to other asteroids and carbonaceous meteorites, indicate that the phyllosilicates were formed endogenously by a globally widespread and extensive alteration process.

13.
Science ; 353(6303): 1008-1010, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27701107

RESUMEN

On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres' surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres' dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts.

14.
GSA Today ; 7(7): 1-7, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11541665

RESUMEN

The controversial hypothesis that the ALH84001 meteorite contains relics of ancient martian life has spurred new findings, but the question has not yet been resolved. Organic matter probably results, at least in part, from terrestrial contamination by Antarctic ice meltwater. The origin of nanophase magnetites and sulfides, suggested, on the basis of their sizes and morphologies, to be biogenic remains contested, as does the formation temperature of the carbonates that contain all of the cited evidence for life. The reported nonfossils may be magnetite whiskers and platelets, probably grown from a vapor. New observations, such as the possible presence of biofilms and shock metamorphic effects in the carbonates, have not yet been evaluated. Regardless of the ultimate conclusion, this controversy continues to help define strategies and sharpen tools that will be required for a Mars exploration program focused on the search for life.


Asunto(s)
Carbonatos/análisis , Fósiles , Hierro/análisis , Vida , Marte , Meteoroides , Óxidos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Carbonatos/química , Exobiología , Óxido Ferrosoférrico , Hierro/química , Microscopía Electrónica , Origen de la Vida , Óxidos/química , Temperatura
15.
Meteorit Planet Sci ; 33(4): 765-73, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11543075

RESUMEN

Crystallographic relationships between magnetite, sulfides, and carbonate rosettes in fracture zones of the Allan Hills (ALH) 84001 Martian meteorite have been studied using analytical electron microscopy. We have focused on those magnetite grains whose growth mechanisms can be rigorously established from their crystallographic properties. Individual magnetite nanocrystals on the surfaces of carbonates are epitaxially intergrown with one another in "stacks" of single-domain crystals. Other magnetite nanocrystals are epitaxially intergrown with the surfaces of the carbonate substrates. The observed magnetite/carbonate (hkl) Miller indices orientation relationships are (1, 1,3)m ¿¿ (1, 1 ,0)c and (1, 1 ,1)m ¿¿ (0,0, 3)c with lattice mismatches of approximately 13% and approximately 11%, respectively. Epitaxy is a common mode of vapor-phase growth of refractory oxides like magnetite, as is the spiral growth about axial screw dislocations previously observed in other magnetite nanocrystals in ALH 84001. Epitaxy rules out intracellular precipitation of these magnetites by (Martian) organisms, provides further evidence of the high-temperature (> 120 degrees C) inorganic origins of magnetite in ALH 84001, and indicates that the carbonates also have been exposed to elevated temperatures.


Asunto(s)
Exobiología , Hierro/análisis , Marte , Meteoroides , Óxidos/análisis , Carbonatos/química , Medio Ambiente Extraterrestre , Óxido Ferrosoférrico , Fósiles , Hierro/química , Microscopía Electrónica , Óxidos/química , Sulfuros/análisis
16.
Science ; 336(6082): 690-4, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22582255

RESUMEN

Vesta is a large differentiated rocky body in the main asteroid belt that accreted within the first few million years after the formation of the earliest solar system solids. The Dawn spacecraft extensively imaged Vesta's surface, revealing a collision-dominated history. Results show that Vesta's cratering record has a strong north-south dichotomy. Vesta's northern heavily cratered terrains retain much of their earliest history. The southern hemisphere was reset, however, by two major collisions in more recent times. We estimate that the youngest of these impact structures, about 500 kilometers across, formed about 1 billion years ago, in agreement with estimates of Vesta asteroid family age based on dynamical and collisional constraints, supporting the notion that the Vesta asteroid family was formed during this event.

17.
Science ; 336(6082): 697-700, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22582257

RESUMEN

The mineralogy of Vesta, based on data obtained by the Dawn spacecraft's visible and infrared spectrometer, is consistent with howardite-eucrite-diogenite meteorites. There are considerable regional and local variations across the asteroid: Spectrally distinct regions include the south-polar Rheasilvia basin, which displays a higher diogenitic component, and equatorial regions, which show a higher eucritic component. The lithologic distribution indicates a deeper diogenitic crust, exposed after excavation by the impact that formed Rheasilvia, and an upper eucritic crust. Evidence for mineralogical stratigraphic layering is observed on crater walls and in ejecta. This is broadly consistent with magma-ocean models, but spectral variability highlights local variations, which suggests that the crust can be a complex assemblage of eucritic basalts and pyroxene cumulates. Overall, Vesta mineralogy indicates a complex magmatic evolution that led to a differentiated crust and mantle.

18.
Science ; 336(6082): 684-6, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22582253

RESUMEN

The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.

19.
Science ; 336(6082): 687-90, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22582254

RESUMEN

Vesta's surface is characterized by abundant impact craters, some with preserved ejecta blankets, large troughs extending around the equatorial region, enigmatic dark material, and widespread mass wasting, but as yet an absence of volcanic features. Abundant steep slopes indicate that impact-generated surface regolith is underlain by bedrock. Dawn observations confirm the large impact basin (Rheasilvia) at Vesta's south pole and reveal evidence for an earlier, underlying large basin (Veneneia). Vesta's geology displays morphological features characteristic of the Moon and terrestrial planets as well as those of other asteroids, underscoring Vesta's unique role as a transitional solar system body.

20.
Science ; 316(5825): 738-42, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17478719

RESUMEN

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA