Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 323(3): C907-C919, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938680

RESUMEN

We sought to determine the effects of long-term voluntary wheel running on markers of long interspersed nuclear element-1 (L1) in skeletal muscle, liver, and the hippocampus of female rats. In addition, markers of the cGAS-STING DNA-sensing pathway that results in inflammation were interrogated. Female Lewis rats (n = 34) were separated into one of three groups including a 6-mo-old group to serve as a young comparator group (CTL, n = 10), a group that had access to a running wheel for voluntary wheel running (EX, n = 12), and an age-matched group that did not (SED, n = 12). Both SED and EX groups were carried out from 6 mo to 15 mo of age. There were no significant differences in L1 mRNA expression for any of the tissues between groups. Methylation of the L1 promoter in the soleus and hippocampus was significantly higher in SED and EX than in CTL group (P < 0.05). ORF1p expression was higher in older SED and EX rats than in CTL rats for every tissue (P < 0.05). There were no differences between groups for L1 mRNA or cGAS-STING pathway markers. Our results suggest there is an increased ORF1 protein expression across tissues with aging that is not mitigated by voluntary wheel running. In addition, although previous data imply that L1 methylation changes may play a role in acute exercise for L1 RNA expression, this does not seem to occur during extended periods of voluntary wheel running.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Femenino , Hígado/metabolismo , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Nucleotidiltransferasas/metabolismo , Condicionamiento Físico Animal/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas Lew
2.
Can J Anaesth ; 70(6): 936-941, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37173565
3.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R337-51, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27357802

RESUMEN

We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P < 0.05). Absolute and relative (body mass-adjusted) omental adipose tissue (OMAT) masses were greatest in WD rats (P < 0.05), and OMAT adipocyte diameters were lowest in KD-fed rats (P < 0.05). None of the assayed OMAT or subcutaneous (SQ) protein markers were affected by the diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum ß-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss.


Asunto(s)
Tejido Adiposo/fisiología , Peso Corporal/fisiología , Dieta Cetogénica , Ingestión de Alimentos/fisiología , Hígado/fisiología , Entrenamiento de Fuerza , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Dieta Occidental , Metabolismo Energético/fisiología , Masculino , Tamaño de los Órganos/fisiología , Ratas , Ratas Sprague-Dawley , Descanso , Conducta Sedentaria , Volición
4.
Br J Anaesth ; 125(6): e458-e460, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32948297

Asunto(s)
Anestesiología , Sesgo , Humanos
5.
Am J Physiol Heart Circ Physiol ; 306(5): H690-8, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24414070

RESUMEN

Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 µM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.


Asunto(s)
Terapia por Ejercicio , Insuficiencia Cardíaca/terapia , Microcirculación , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Consumo de Oxígeno , Oxígeno/sangre , Adaptación Fisiológica , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Cinética , Masculino , Microcirculación/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Resistencia Física , Ratas , Ratas Sprague-Dawley , Volumen Sistólico , Función Ventricular Izquierda , Presión Ventricular
6.
FASEB J ; 27(1): 399-409, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23099650

RESUMEN

Following exposure to microgravity, there is a reduced ability of astronauts to augment peripheral vascular resistance, often resulting in orthostatic hypotension. The purpose of this study was to test the hypothesis that mesenteric arteries and veins will exhibit diminished vasoconstrictor responses after spaceflight. Mesenteric arteries and veins from female mice flown on the Space Transportation System (STS)-131 (n=11), STS-133 (n=6), and STS-135 (n=3) shuttle missions and respective ground-based control mice (n=30) were isolated for in vitro experimentation. Vasoconstrictor responses were evoked in arteries via norepinephrine (NE), potassium chloride (KCl), and caffeine, and in veins through NE across a range of intraluminal pressures (2-12 cmH(2)O). Vasoconstriction to NE was also determined in mesenteric arteries at 1, 5, and 7 d postlanding. In arteries, maximal constriction to NE, KCl, and caffeine were reduced immediately following spaceflight and 1 d postflight. Spaceflight also reduced arterial ryanodine receptor-3 mRNA levels. In mesenteric veins, there was diminished constriction to NE after flight. The results indicate that the impaired vasoconstriction following spaceflight occurs through the ryanodine receptor-mediated intracellular Ca(2+) release mechanism. Such vascular changes in astronauts could compromise the maintenance of arterial pressure during orthostatic stress.


Asunto(s)
Adaptación Fisiológica , Arterias Mesentéricas/fisiología , Venas Mesentéricas/fisiología , Vuelo Espacial , Vasoconstricción , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
7.
FASEB J ; 27(6): 2282-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23457215

RESUMEN

Evidence indicates that cerebral blood flow is both increased and diminished in astronauts on return to Earth. Data from ground-based animal models simulating the effects of microgravity have shown that decrements in cerebral perfusion are associated with enhanced vasoconstriction and structural remodeling of cerebral arteries. Based on these results, the purpose of this study was to test the hypothesis that 13 d of spaceflight [Space Transportation System (STS)-135 shuttle mission] enhances myogenic vasoconstriction, increases medial wall thickness, and elicits no change in the mechanical properties of mouse cerebral arteries. Basilar and posterior communicating arteries (PCAs) were isolated from 9-wk-old female C57BL/6 mice for in vitro vascular and mechanical testing. Contrary to that hypothesized, myogenic vasoconstrictor responses were lower and vascular distensibility greater in arteries from spaceflight group (SF) mice (n=7) relative to ground-based control group (GC) mice (n=12). Basilar artery maximal diameter was greater in SF mice (SF: 236±9 µm and GC: 215±5 µm) with no difference in medial wall thickness (SF: 12.4±1.6 µm; GC: 12.2±1.2 µm). Stiffness of the PCA, as characterized via nanoindentation, was lower in SF mice (SF: 3.4±0.3 N/m; GC: 5.4±0.8 N/m). Collectively, spaceflight-induced reductions in myogenic vasoconstriction and stiffness and increases in maximal diameter of cerebral arteries signify that elevations in brain blood flow may occur during spaceflight. Such changes in cerebral vascular control of perfusion could contribute to increases in intracranial pressure and an associated impairment of visual acuity in astronauts during spaceflight.


Asunto(s)
Arterias Cerebrales/patología , Arterias Cerebrales/fisiopatología , Hipertensión Intracraneal/etiología , Ingravidez/efectos adversos , Animales , Astronautas , Circulación Cerebrovascular/fisiología , Femenino , Suspensión Trasera/efectos adversos , Suspensión Trasera/fisiología , Humanos , Hipertensión Intracraneal/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Vuelo Espacial , Vasoconstricción/fisiología
8.
Lung ; 192(5): 811-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25104232

RESUMEN

PURPOSE: To identify the effect of the benzimidazalone derivative, NS1619, on modulating pulmonary vascular tone in lungs from rats exposed to normoxia (21% FiO2) or chronic hypoxia (10% FiO2) for three weeks. METHODS: Isolated perfused lungs were preconstricted (U46619), and dose-dependent vasodilation to NS1619 was assessed. To elucidate the mechanisms responsible, NS1619 vasodilatory responses were assessed following inhibition of large-conductance Ca(2+)-activated (BKCa; iberiotoxin and paxilline), L-type Ca2+ (nifedipine), K+ (tetraethylammonium), Cl- (niflumic acid), and cation/TRP (lanthanum) channels, as well as nitric oxide synthase (L-NAME). RESULTS: Compared to normoxia, NS1619-induced vasodilation was significantly greater following hypoxia; however, NO-dependent vasodilation and BKCa-mediated vasodilation, in response to NS1619, were similar in the normoxic and hypoxic lungs. In contrast, direct activation of L-type Ca2+ and non-BKCa K+ channel was involved in the NS1619-induced vasodilation only in hypoxic lungs. CONCLUSIONS: NS1619 causes pulmonary vasodilation by affecting multiple complementary pathways, including stimulation of NO production, activation of BKCa channels, other TEA-sensitive K+ channels, and L-type Ca2+ channels, and could be considered as a therapeutic agent in hypoxic PH.


Asunto(s)
Antihipertensivos/farmacología , Bencimidazoles/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/fisiopatología , Pulmón/irrigación sanguínea , Arteria Pulmonar/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipoxia/metabolismo , Masculino , Óxido Nítrico/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Circulación Pulmonar/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
9.
Pulm Circ ; 14(2): e12358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576776

RESUMEN

Reduced exercise capacity in pulmonary hypertension (PH) significantly impacts quality of life. However, the cause of reduced exercise capacity in PH remains unclear. The objective of this study was to investigate whether intrinsic skeletal muscle changes are causative in reduced exercise capacity in PH using preclinical PH rat models with different PH severity. PH was induced in adult Sprague-Dawley (SD) or Fischer (CDF) rats with one dose of SU5416 (20 mg/kg) injection, followed by 3 weeks of hypoxia and additional 0-4 weeks of normoxia exposure. Control s rats were injected with vehicle and housed in normoxia. Echocardiography was performed to assess cardiac function. Exercise capacity was assessed by VO2 max. Skeletal muscle structural changes (atrophy, fiber type switching, and capillary density), mitochondrial function, isometric force, and fatigue profile were assessed. In SD rats, right ventricular systolic dysfunction is associated with reduced exercise capacity in PH rats at 7-week timepoint in comparison to control rats, while no changes were observed in skeletal muscle structure, mitochondrial function, isometric force, or fatigue profile. CDF rats at 4-week timepoint developed a more severe PH and, in addition to right ventricular dysfunction, the reduced exercise capacity in these rats is associated with skeletal muscle atrophy; however, mitochondrial function, isometric force, and fatigue profile in skeletal muscle remain unchanged. Our data suggest that cardiopulmonary impairments in PH are the primary cause of reduced exercise capacity, which occurs before intrinsic skeletal muscle dysfunction.

10.
Am J Reprod Immunol ; 89(5): e13698, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991562

RESUMEN

Amidst the ongoing coronavirus disease 2019 (COVID-19) pandemic, evidence suggests racial and ethnic disparities in COVID-19-related outcomes. Given these disparities, it is important to understand how such patterns may translate to high-risk cohorts, including obstetric patients. A PubMed search was performed to identify studies assessing pregnancy, neonatal, and other health-related complications by race or ethnicity in obstetric patients with COVID-19 infection. Forty articles were included in our analysis based on novelty, relevance, and redundancy. These articles revealed that Black and Hispanic obstetric patients present an increased risk for SARS-CoV-2 infection and maternal mortality; racial and ethnic minority patients, particularly those of Black and Asian backgrounds, are at increased risk for hospitalization and ICU admission; racial and ethnic minority groups, in particular Black patients, have an increased risk for mechanical ventilation; Black and Hispanic patients are more likely to experience dyspnea; Hispanic patients showed higher rates of pneumonia; and Black patients present an increased risk of acute respiratory distress syndrome (ARDS). There is conflicting literature on the relationship between race and ethnicity and various pregnancy and neonatal outcomes. Several factors may underly the racial and ethnic disparities observed in the obstetric population, including biological mechanisms and social determinants of health.


Asunto(s)
COVID-19 , Etnicidad , Grupos Raciales , Femenino , Humanos , Recién Nacido , Embarazo , Negro o Afroamericano , COVID-19/etnología , Grupos Minoritarios , SARS-CoV-2 , Hispánicos o Latinos
11.
Med Sci Sports Exerc ; 55(5): 813-823, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36728986

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS: Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS: All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS: These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.


Asunto(s)
Huesos , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Microtomografía por Rayos X , Traumatismos de la Médula Espinal/terapia , Perfusión
12.
Crit Care Med ; 40(10): 2858-66, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22846782

RESUMEN

OBJECTIVES: Although mechanical ventilation is a life-saving intervention in patients suffering from respiratory failure, prolonged mechanical ventilation is often associated with numerous complications including problematic weaning. In contracting skeletal muscle, inadequate oxygen supply can limit oxidative phosphorylation resulting in muscular fatigue. However, whether prolonged mechanical ventilation results in decreased diaphragmatic blood flow and induces an oxygen supply-demand imbalance in the diaphragm remains unknown. DESIGN: We tested the hypothesis that prolonged controlled mechanical ventilation results in a time-dependent reduction in rat diaphragmatic blood flow and microvascular PO2 and that prolonged mechanical ventilation would diminish the diaphragm's ability to increase blood flow in response to muscular contractions. MEASUREMENTS AND MAIN RESULTS: Compared to 30 mins of mechanical ventilation, 6 hrs of mechanical ventilation resulted in a 75% reduction in diaphragm blood flow (via radiolabeled microspheres), which did not occur in the intercostal muscle or high-oxidative hindlimb muscle (e.g., soleus). There was also a time-dependent decline in diaphragm microvascular PO2 (via phosphorescence quenching). Further, contrary to 30 mins of mechanical ventilation, 6 hrs of mechanical ventilation significantly compromised the diaphragm's ability to increase blood flow during electrically-induced contractions, which resulted in a ~80% reduction in diaphragm oxygen uptake. In contrast, 6 hrs of spontaneous breathing in anesthetized animals did not alter diaphragm blood flow or the ability to augment flow during electrically-induced contractions. CONCLUSIONS: These new and important findings reveal that prolonged mechanical ventilation results in a time-dependent decrease in the ability of the diaphragm to augment blood flow to match oxygen demand in response to contractile activity and could be a key contributing factor to difficult weaning. Although additional experiments are required to confirm, it is tempting to speculate that this ventilator-induced decline in diaphragmatic oxygenation could promote a hypoxia-induced generation of reactive oxygen species in diaphragm muscle fibers and contribute to ventilator-induced diaphragmatic atrophy and contractile dysfunction.


Asunto(s)
Diafragma/irrigación sanguínea , Microcirculación/fisiología , Respiración Artificial/efectos adversos , Animales , Velocidad del Flujo Sanguíneo , Análisis de los Gases de la Sangre , Femenino , Contracción Muscular/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
13.
Am J Physiol Regul Integr Comp Physiol ; 301(3): R801-10, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21677264

RESUMEN

Testicular function and associated testosterone concentration decline with advancing age, and an impaired O2 supply may contribute, in part, to this reduction. We hypothesized that there would be a reduced microvascular Po2 (Po2(m)) in the testes from aged rats, and this reduced Po2(m) would be associated with impaired vasomotor control in isolated resistance arterioles. In addition, given the positive effect of exercise on microvascular Po2 and arteriolar function, we further hypothesized that there would be an enhanced Po2(m) in the testes from aged animals after aerobic exercise training. Testicular Po2(m) was measured in vivo via phosphorescence quenching in young and aged sedentary (SED) and exercise-trained (ET; 15 m/min treadmill walking, 15-degree incline, 5 days/wk for 10 wk) male Fischer-344 rats. Vasoconstriction to α-adrenergic [norepinephrine (NE) and phenylephrine (PE)] and myogenic stimuli in testicular arterioles was assessed in vitro. In the SED animals, testicular Po2(m) was reduced by ∼50% with old age (aged SED 11.8 ± 1.9 vs. young SED 22.1 ± 1.1 mmHg; P = 0.0001). Contrary to our hypothesis, exercise training did not alter Po2(m) in the aged group and reduced testicular Po2(m) in the young animals, abolishing age-related differences (young ET, 10.0 ± 0.8 vs. aged ET, 10.7 ± 0.9 mmHg; P = 0.37). Vasoconstrictor responsiveness to NE and PE was diminished in aged compared with young (NE: young SED, 58 ± 2 vs. aged SED, 47 ± 2%; P = 0.001) (PE: young SED, 51 ± 3 vs. aged SED, 36 ± 5%; P = 0.008). Exercise training did not alter maximal vasoconstriction to NE in young or aged groups. In summary, advancing age is associated with a reduced testis Po2(m) and impaired adrenergic vasoconstriction. The diminished testicular microvascular driving pressure of O2 and associated vascular dysfunction provides mechanistic insight into the old age-related decrease in testicular function, and a reduced Po2(m) may contribute, in part, to reduced fertility markers after exercise training.


Asunto(s)
Envejecimiento , Microcirculación , Oxígeno/sangre , Resistencia Física , Testículo/irrigación sanguínea , Vasoconstricción , Agonistas Adrenérgicos/farmacología , Factores de Edad , Análisis de Varianza , Animales , Arteriolas/metabolismo , Relación Dosis-Respuesta a Droga , Fertilidad , Masculino , Microcirculación/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
14.
J Appl Physiol (1985) ; 131(4): 1288-1299, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473574

RESUMEN

Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.


Asunto(s)
Osteogénesis , Traumatismos de la Médula Espinal , Animales , Huesos , Masculino , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/complicaciones , Microtomografía por Rayos X
15.
Toxicon ; 185: 129-146, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32682827

RESUMEN

The search for novel and relevant cancer therapeutics is continuous and ongoing. Cancer adaptations, resulting in therapeutic treatment failures, fuel this continuous necessity for new drugs to novel targets. Recently, researchers have started to investigate the effect of venoms and venom components on different types of cancer, investigating their mechanisms of action. Receptor tyrosine kinases (RTKs) comprise a family of highly conserved and functionally important druggable targets for cancer therapy. This research exploits the novelty of complex venom mixtures to affect phosphorylation of the epidermal growth factor receptor (EGFR) and related RTK family members, dually identifying new activities and unexplored avenues for future cancer and venom research. Six whole venoms from diverse species taxa, were evaluated for their ability to illicit changes in the phosphorylated expression of a panel of 49 commonly expressed RTKs. The triple negative breast cancer cell line MDA-MB-468 was treated with optimised venom doses, pre-determined by SDS PAGE and Western blot analysis. The phosphorylated expression levels of 49 RTKs in response to the venoms were assessed with the use of Human Phospho-RTK Arrays and analysed using ImageLab 5.2.1 analysis software (BioRad). Inhibition of EGFR phosphorylation occurred with treatment of venom from Acanthoscurria geniculata (Theraphosidae), Heterometrus swammerdami (Scorpionidae), Crotalus durissus vegrandis (Crotalidae) and Naja naja (Elapidae). Western green mamba Dendroaspis viridis venom increased EGFR phosphorylation. Eph, HGFR and HER were the most affected receptor families by venoms. Whilst the importance of these changes in terms of effect on MDA-MB-468 cells' long-term viability and functionality are still unclear, the findings present exciting opportunities for further investigation as potential drug targets in cancer and as tools to understand better how these pathways interact.


Asunto(s)
Antineoplásicos/farmacología , Receptores ErbB/metabolismo , Venenos de Serpiente/farmacología , Animales , Antivenenos , Crotalus , Venenos Elapídicos , Elapidae , Humanos , Fosforilación
16.
Pulm Circ ; 10(2): 2045894020925762, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32523689

RESUMEN

Pulmonary hypertension is associated with pronounced exercise intolerance (decreased V c O2 max) that can significantly impact quality of life. The cause of exercise intolerance in pulmonary hypertension remains unclear. Mitochondrial supercomplexes are large respiratory assemblies of individual electron transport chain complexes which can promote more efficient respiration. In this study, we examined pulmonary hypertension and exercise-induced changes in skeletal muscle electron transport chain protein expression and supercomplex assembly. Pulmonary arterial hypertension was induced in rats with the Sugen/Hypoxia model (10% FiO2, three weeks). Pulmonary arterial hypertension and control rats were assigned to an exercise training protocol group or kept sedentary for one month. Cardiac function and V c O2 max were assessed at the beginning and end of exercise training. Red (Type 1-oxidative muscle) and white (Type 2-glycolytic muscle) gastrocnemius were assessed for changes in electron transport chain complex protein expression and supercomplex assembly via SDS- and Blue Native-PAGE. Results showed that pulmonary arterial hypertension caused a significant decrease in V c O2 max via treadmill testing that was improved with exercise (P < 0.01). Decreases in cardiac output and pulmonary acceleration time due to pulmonary arterial hypertension were not improved with exercise. Pulmonary arterial hypertension reduced expression in individual electron transport chain complex protein expression (NDUFB8 (CI), SDHB (CII), Cox IV (CIV), but not UQCRC2 (CIII), or ATP5a (CV)) in red gastrocnemius muscle. Both red gastrocnemius and white gastrocnemius electron transport chain expression was unaffected by exercise. However, non-denaturing Blue Native-PAGE analysis of mitochondrial supercomplexes demonstrated increases with exercise training in pulmonary arterial hypertension in the red gastrocnemius but not white gastrocnemius muscle. Pulmonary arterial hypertension-induced exercise intolerance is improved with exercise and is associated with muscle type specific alteration in mitochondrial supercomplex assembly and expression of mitochondrial electron transport chain proteins.

17.
Circ Heart Fail ; 12(11): e005819, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31707802

RESUMEN

BACKGROUND: Angiotensin II has been implicated in maladaptive right ventricular (RV) hypertrophy and fibrosis associated with pulmonary hypertension (PH). Natriuretic peptides decrease RV afterload by promoting pulmonary vasodilation and inhibiting vascular remodeling but are degraded by neprilysin. We hypothesized that angiotensin receptor blocker and neprilysin inhibitor, sacubitril/valsartan (Sac/Val, LCZ696), will attenuate PH and improve RV function by targeting both pulmonary vascular and RV remodeling. METHODS: PH was induced in rats using the SU5416/hypoxia model (Su/Hx), followed by 6-week treatment with placebo, Sac/Val, or Val alone. There were 4 groups: CON-normoxic animals with placebo (n=18); PH-Su/Hx rats+placebo (n=34); PH+Sac/Val (N=24); and PH+Val (n=16). RESULTS: In animals with PH, treatment with Sac/Val but not Val resulted in significant reduction in RV pressure (mm Hg: PH: 62±4, PH+Sac/Val: 46±5), hypertrophy (RV/LV+S: PH: 0.74±0.06, PH+Sac/Val: 0.46±0.06), collagen content (µg/50 µg protein: PH: 8.2±0.3, PH+Sac/Val: 6.4±0.4), pressures and improvement in RVs (mm/s: PH: 31.2±1.8, PH+Sac/Val: 43.1±3.6) compared with placebo. This was associated with reduced pulmonary vascular wall thickness, increased lung levels of ANP (atrial natriuretic peptide), BNP (brain-type natriuretic peptide), and cGMP, and decreased plasma endothelin-1 compared with PH alone. Also, PH+Sac/Val animals had altered expression of PKC isozymes in RV tissue compared with PH alone. CONCLUSIONS: Sac/Val reduces pulmonary pressures, vascular remodeling, as well as RV hypertrophy in a rat model of PH and may be appropriate for treatment of pulmonary hypertension and RV dysfunction.


Asunto(s)
Aminobutiratos/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Arteria Pulmonar/efectos de los fármacos , Tetrazoles/farmacología , Animales , Compuestos de Bifenilo , Modelos Animales de Enfermedad , Combinación de Medicamentos , Femenino , Fibrosis , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/prevención & control , Masculino , Neprilisina/antagonistas & inhibidores , Arteria Pulmonar/fisiopatología , Ratas Sprague-Dawley , Valsartán , Remodelación Vascular/efectos de los fármacos , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/prevención & control , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular
18.
J Appl Physiol (1985) ; 127(4): 895-904, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31369326

RESUMEN

The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans. Apparently healthy younger (23 ± 3 y, n = 15) and older participants (58 ± 8 y, n = 15) donated a vastus lateralis biopsy before 1 h of cycling exercise (PRE) at ~70% of heart rate reserve. Second (2 h) and third (8 h) postexercise muscle biopsies were also obtained. L1 DNA and mRNA expression were quantified using three primer sets [5' untranslated region (UTR), L1.3, and ORF1]. 5'UTR and L1.3 DNA methylation as well as ORF1 protein expression were also quantified. PRE 5'UTR, ORF1, or L1.3 DNA were not different between age groups (P > 0.05). ORF1 mRNA was greater in older versus younger participants (P = 0.014), and cycling lowered this marker at 2 h versus PRE (P = 0.027). 5'UTR and L1.3 DNA methylation were higher in younger versus older participants (P < 0.05). Accelerometry data collected during a 2-wk period before the exercise bout indicated higher moderate-to-vigorous physical activity (MVPA) levels per day was associated with lower PRE ORF1 mRNA in all participants (r = -0.398, P = 0.032). In summary, skeletal muscle ORF1 mRNA is higher in older apparently healthy humans, which may be related to lower DNA methylation patterns. ORF1 mRNA is also reduced with endurance exercise and is negatively associated with higher daily MVPA levels.NEW & NOTEWORTHY The long interspersed nuclear element-1 (L1) gene is highly abundant in the genome and encodes for an autonomous retrotransposon, which is capable of copying and pasting itself into other portions of the genome. This is the first study in humans to demonstrate that certain aspects of skeletal muscle L1 activity are altered with aging. Additionally, this is the first study in humans to demonstrate that L1 ORF1 mRNA levels decrease after a bout of endurance exercise, regardless of age.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Resistencia Física/fisiología , ARN Mensajero/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/fisiología , Terapia por Ejercicio/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiología , Adulto Joven
19.
Am J Cancer Res ; 9(4): 650-667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105994

RESUMEN

Physical activity is associated with diminished risk of several cancers, and preclinical studies suggest exercise training may alter tumor cell growth in certain tissue(s) (e.g., adipose). From moderate-intensity exercise-trained rats versus sedentary controls, we hypothesized 1) there will be a decreased prostate cancer cell viability and migration in vitro and, within the prostate, a reduced 5α-reductase 2 (5αR2) and increased caspase-3 expression, and 2) that exercise training in tumor-bearing (TB) animals will demonstrate a reduced tumor cell viability in prostate-conditioned media. Serum and prostate were harvested from sedentary or exercise-trained (treadmill running, 10-11 weeks) immune-competent (Copenhagen; n = 20) and -deficient (Nude; n = 18) rats. AT-1 and PC-3 prostate cancer cells were grown in one or more of the following: serum-supplemented media (SSM), SSM from TB rats (SSM-TB), prostate-conditioned media (PCM) or PCM from TB rats (PCM-TB) for 24-96 h under normoxic (18.6% O2) or hypoxic (5% O2) conditions. Under normoxic condition, there was a decreased AT-1 cell viability in SSM and PCM from the exercise-trained (ET) immune-competent rats, but no difference in PC-3 cell viability in SSM and PCM from ET Nude rats versus the sedentary (SED) group, or in SSM-TB from ET-TB Nude rats versus the SED-TB group. However, there was a decreased PC-3 cell viability in the PCM-TB of the ET-TB group versus SED-TB group. PC-3 cell viability in all conditioned media types was not altered between groups with hypoxia. In the prostate, exercise training did not alter 5αR2 expression levels, but increased caspase-3 expression levels. In conclusion, prior exercise status reduced prostate cancer cell viability in the serum and prostate of trained rats but did not modify several other key prostate tumor cell growth characteristics (e.g., migration, cell cycle except in S phase of PC-3 cells in PCM-TB). Importantly, once the tumor was established, exercise training reduced tumor cell viability in the surrounding prostate, which may help explain the reduced severity of the disease in patients that exercise.

20.
J Appl Physiol (1985) ; 127(2): 423-431, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31161883

RESUMEN

Mechanical ventilation (MV) is a life-saving intervention, yet with prolonged MV (i.e., ≥6 h) there are time-dependent reductions in diaphragm blood flow and an impaired hyperemic response of unknown origin. Female Sprague-Dawley rats (4-8 mo, n = 118) were randomized into two groups; spontaneous breathing (SB) and 6-h (prolonged) MV. After MV or SB, vasodilation (flow-induced, endothelium-dependent and -independent agonists) and constriction (myogenic and α-adrenergic) responses were measured in first-order (1A) diaphragm resistance arterioles in vitro, and endothelial nitric oxide synthase (eNOS) mRNA expression was quantified. Following prolonged MV, there was a significant reduction in diaphragm arteriolar flow-induced (SB, 34.7 ± 3.8% vs. MV, 22.6 ± 2.0%; P ≤ 0.05), endothelium-dependent (via acetylcholine; SB, 64.3 ± 2.1% vs. MV, 36.4 ± 2.3%; P ≤ 0.05) and -independent (via sodium nitroprusside; SB, 65.0 ± 3.1% vs. MV, 46.0 ± 4.6%; P ≤ 0.05) vasodilation. Compared with SB, there was reduced eNOS mRNA expression (P ≤ 0.05). Prolonged MV diminished phenylephrine-induced vasoconstriction (SB, 37.3 ± 6.7% vs. MV, 19.0 ± 1.9%; P ≤ 0.05) but did not alter myogenic or passive pressure responses. The severe reductions in diaphragmatic blood flow at rest and during contractions, with prolonged MV, are associated with diaphragm vascular dysfunction which occurs through both endothelium-dependent and endothelium-independent mechanisms.NEW & NOTEWORTHY Following prolonged mechanical ventilation, vascular alterations occur through both endothelium-dependent and -independent pathways. This is the first study, to our knowledge, demonstrating that diaphragm arteriolar dysfunction occurs consequent to prolonged mechanical ventilation and likely contributes to the severe reductions in diaphragmatic blood flow and weaning difficulties.


Asunto(s)
Diafragma/fisiología , Resistencia Vascular/fisiología , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Arteriolas/efectos de los fármacos , Arteriolas/metabolismo , Arteriolas/fisiología , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Femenino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroprusiato/farmacología , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Respiración Artificial/métodos , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA