Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Saudi Pharm J ; 32(3): 101971, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38357701

RESUMEN

Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.

2.
Pharmacol Res ; 175: 105993, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801680

RESUMEN

A dysregulation of the wound healing process can lead to the development of various intractable ulcers or excessive scar formation. Therefore it is essential to identify novel pharmacological strategies to promote wound healing and restore the mechanical integrity of injured tissue. The goal of the present study was to formulate a nano-complex containing melittin (MEL) and diclofenac (DCL) with the aim to evaluate their synergism and preclinical efficacy in an in vivo model of acute wound. After its preparation and characterization, the therapeutic potential of the combined nano-complexes was evaluated. MEL-DCL nano-complexes exhibited better regenerated epithelium, keratinization, epidermal proliferation, and granulation tissue formation, which in turn showed better wound healing activity compared to MEL, DCL, or positive control. The nano-complexes also showed significantly enhanced antioxidant activity. Treatment of wounded skin with MEL-DCL nano-complexes showed significant reduction of interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-α (TNF-α) pro-inflammatory markers that was paralleled by a substantial increase in mRNA expression levels of collagen, type I, alpha 1 (Col1A1) and collagen, type IV, alpha 1 (Col4A1), and hydroxyproline content as compared to individual drugs. Additionally, MEL-DCL nano-complexes were able to significantly increase hypoxia-inducible factor 1-alpha (HIF-1α) and transforming growth factor beta 1 (TGF-ß1) proteins expression compared to single drugs or negative control group. SB431542, a selective inhibitor of type-1 TGF-ß receptor, significantly prevented in our in vitro assay the wound healing process induced by the MEL-DCL nano-complexes, suggesting a key role of TGF-ß1 in the wound closure. In conclusion, the nano-complex of MEL-DCL represents a novel pharmacological tool that can be topically applied to improve wound healing.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Citocinas/metabolismo , Diclofenaco/administración & dosificación , Hidrogeles/administración & dosificación , Meliteno/administración & dosificación , Nanoestructuras/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Animales , Células Cultivadas , Sinergismo Farmacológico , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Queratinocitos/efectos de los fármacos , Masculino , Ratas Wistar , Piel/efectos de los fármacos , Piel/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077466

RESUMEN

Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid-polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Antineoplásicos/uso terapéutico , Portadores de Fármacos , Femenino , Humanos , Lípidos/uso terapéutico , Liposomas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
J Enzyme Inhib Med Chem ; 36(1): 1067-1078, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34027787

RESUMEN

Two series of chalcone/aryl carboximidamide hybrids 4a-f and 6a-f were synthesised and evaluated for their inhibitory activity against iNOS and PGE2. The most potent derivatives were further checked for their in vivo anti-inflammatory activity utilising carrageenan-induced rat paw oedema model. Compounds 4c, 4d, 6c and 6d were proved to be the most effective inhibitors of PGE2, LPS-induced NO production, iNOS activity. Moreover, 4c, 4d, 6c and 6d showed significant oedema inhibition ranging from 62.21% to 78.51%, compared to indomethacin (56.27 ± 2.14%) and celecoxib (12.32%). Additionally, 4c, 6a and 6e displayed good COX2 inhibitory activity while 4c, 6a and 6c exhibited the highest 5LOX inhibitory activity. Compounds 4c, 4d, 6c and 6d fit nicely into the pocket of iNOS protein (PDB ID: 1r35) via the important amino acid residues. Prediction of physicochemical parameters exhibited that 4c, 4d, 6c and 6d had acceptable physicochemical parameters and drug-likeness. The results indicated that chalcone/aryl carboximidamides 4c, 4d, 6c and 6d, in particular 4d and 6d, could be used as promising lead candidates as potent anti-inflammatory agents.


Asunto(s)
Amidas/farmacología , Antiinflamatorios no Esteroideos/farmacología , Chalcona/farmacología , Dinoprostona/antagonistas & inhibidores , Diseño de Fármacos , Edema/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Carragenina , Células Cultivadas , Chalcona/síntesis química , Chalcona/química , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Edema/inducido químicamente , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ratones , Estructura Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Relación Estructura-Actividad
5.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948081

RESUMEN

In the present work, novel modality for lung cancer intervention has been explored. Primary literature has established the potential role of cyclooxygenase-2 (COX-2) inhibitor in regression of multiple forms of carcinomas. To overcome its poor water solubility and boost anticancer activity, etoricoxib (ETO) was chosen as a therapeutic candidate for repurposing and formulated into a nanoemulsion (NE). The prepared ETO loaded NE was characterized for the surface charge, droplet size, surface morphology, and in vitro release. The optimized ETO loaded NE was then investigated for its anticancer potential employing A549 lung cancer cell line via cytotoxicity, apoptotic activity, mitochondrial membrane potential activity, cell migration assay, cell cycle analysis, Caspase-3, 9, and p53 activity by ELISA and molecular biomarker analysis through RT-PCR test. The developed ETO-NE formulation showed adequate homogeneity in the droplet size distribution with polydispersity index (PDI) of (0.2 ± 0.03) and had the lowest possible droplet size (124 ± 2.91 nm) and optimal negative surface charge (-8.19 ± 1.51 mV) indicative of colloidal stability. The MTT assay results demonstrated that ETO-NE exhibited substantial anticancer activity compared to the free drug. The ETO-NE showed a substantially potent cytotoxic effect against lung cancer cells, as was evident from the commencement of apoptosis/necrotic cell death and S-phase cell cycle arrests in A549 cells. The study on these molecules through RT-PCR confirmed that ETO-NE is significantly efficacious in mitigating the abundance of IL-B, IL-6, TNF, COX-2, and NF-kB as compared to the free ETO and control group. The current study demonstrates that ETO-NE represents a feasible approach that could provide clinical benefits for lung cancer patients in the future.


Asunto(s)
Apoptosis , Emulsiones/química , Etoricoxib/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular , Proliferación Celular , Etoricoxib/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatología , Potencial de la Membrana Mitocondrial
6.
AAPS PharmSciTech ; 22(5): 177, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34128106

RESUMEN

Fluvastatin (FLV) is known to inhibit the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), which is over-expressed in various cancers. FLV has been reported to decrease cancer development and metastasis. However, because of low bioavailability, extensive first-pass metabolism and short half-life of FLV (1.2 h), it is not appropriate for clinical application. Therefore, FLV-loaded emulsomes were formulated and optimized using Box-Behnken experimental design to achieve higher efficiency of formulation. Antitumor activity of optimized FLV-loaded emulsomes was evaluated in prostate cancer cells using cell cytotoxicity, apoptotic activity, cell cycle analysis, and enzyme-linked immunosorbent assay. The FLV-loaded emulsomes exhibited a monodispersed size distribution with a mean particle size less than 100 nm as measured by zetasizer. The entrapment efficiency was found to be 93.74% with controlled drug release profile. FLV-EMLs showed a significant inhibitory effect on the viability of PC3 cells when compared to the free FLV (P < 0.0025). Furthermore, FLV-EMLs showed significant arrest in G2/M and increase in percentage of apoptotic cells as compared to free FLV. FLV-EMLs were more effective than free FLV in reducing mitochondrial membrane potential and increase in caspase-3 activity. These results suggesting that FLV-EMLs caused cell cycle arrest which clarifies its significant antiproliferative effect compared to the free drug. Therefore, optimized FLV-EMLs may be an effective carrier for FLV in prostate cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Citotoxinas/farmacología , Portadores de Fármacos/farmacología , Fluvastatina/farmacología , Neoplasias de la Próstata , Antineoplásicos/síntesis química , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citotoxinas/síntesis química , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/síntesis química , Fluvastatina/síntesis química , Humanos , Masculino , Células PC-3 , Tamaño de la Partícula
7.
Mol Biol Rep ; 47(11): 8775-8788, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33098048

RESUMEN

Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo , Regulación de la Expresión Génica/efectos de los fármacos , Ésteres del Forbol/farmacología , Tretinoina/farmacología , Línea Celular Tumoral , Medios de Cultivo/química , Medios de Cultivo/farmacología , Humanos , Receptores de Dopamina D2/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/metabolismo
8.
Drug Dev Ind Pharm ; 45(2): 323-332, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30404554

RESUMEN

Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250 ± 28 nm), higher zeta potential (+58 ± 8 mV), and high entrapment efficiency (86 ± 5.6%) and loading capacity (34 ± 7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.


Asunto(s)
Antiinflamatorios/administración & dosificación , Valerato de Betametasona/administración & dosificación , Administración Tópica , Animales , Antiinflamatorios/química , Valerato de Betametasona/química , Quitosano , Dermatitis Atópica/tratamiento farmacológico , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Presión , Ratas , Ratas Wistar , Piel/efectos de los fármacos , Solventes
10.
Saudi Pharm J ; 26(6): 876-885, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30202231

RESUMEN

Resveratrol (RL), a natural polyphenol, is known for its diverse biological effects against various human cancer cell lines. But low aqueous solubility, poor bioavailability, and stability limit its efficacy against prostate cancer. In this study polymeric nanoparticles encapsulating resveratrol (RLPLGA) were designed and their cytotoxic and mode of apoptotic cells death against prostate cancer cell line (LNCaP) was determined. Nanoparticles were prepared by solvent displacement method and characterized for particle size, TEM, entrapment efficiency, DSC and drug release study. RLPLGA exhibited a significant decrease in cell viability with 50% and 90% inhibitory concentration (IC50 and IC90) of 15.6 ±â€¯1.49 and 41.1 ±â€¯2.19 µM respectively against the LNCaP cells. This effect was mediated by apoptosis as confirmed by cell cycle arrest at G1-S transition phase, externalization of phosphatidylserine, DNA nicking, loss of mitochondrial membrane potential and reactive oxygen species generation in LNCaP cells. Furthermore, significantly greater cytotoxicity to LNCaP cells was observed with nanoparticles as compared to that of free RL at all tested concentrations. RLPLGA nanoparticles presented no adverse cytotoxic effects on murine macrophages even at 200 µM. Our findings support the potential use of developed resveratrol loaded nanoparticle for the prostate cancer chemoprevention/ chemotherapy with no adverse effect on normal cells.

11.
Drug Dev Ind Pharm ; 41(12): 1922-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26057769

RESUMEN

CONTEXT: Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood-brain barrier (BBB), thus impeding treatment of these conditions. OBJECTIVE: Attention has turned to developing novel and effective delivery systems to provide good bioavailability in the brain. METHODS: Intranasal administration is a non-invasive method of drug delivery that may bypass the BBB, allowing therapeutic substances direct access to the brain. However, intranasal administration produces quite low drug concentrations in the brain due limited nasal mucosal permeability and the harsh nasal cavity environment. Pre-clinical studies using encapsulation of drugs in nanoparticulate systems improved the nose to brain targeting and bioavailability in brain. However, the toxic effects of nanoparticles on brain function are unknown. RESULT AND CONCLUSION: This review highlights the understanding of several brain diseases and the important pathophysiological mechanisms involved. The review discusses the role of nanotherapeutics in treating brain disorders via nose to brain delivery, the mechanisms of drug absorption across nasal mucosa to the brain, strategies to overcome the blood brain barrier, nanoformulation strategies for enhanced brain targeting via nasal route and neurotoxicity issues of nanoparticles.


Asunto(s)
Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , Nanopartículas/administración & dosificación , Nanopartículas/metabolismo , Mucosa Nasal/metabolismo , Administración Intranasal , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Mucosa Nasal/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
12.
Drug Dev Ind Pharm ; 41(10): 1674-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25496439

RESUMEN

CONTEXT: Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra. OBJECTIVE: The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson's drug ropinirole (RH) to the brain using polymeric nanoparticles. MATERIALS AND METHODS: Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration. RESULTS AND DISCUSSION: The RH-CSNPs showed sustained release profiles for up to 18 h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210 ± 0.52), followed by kidneys (6.862 ± 0.62), intestine (4.862 ± 0.45), and lungs (4.640 ± 0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251 ± 0.09 and 0.386 ± 0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5 h are indicative of direct nose to brain transport, bypassing the blood-brain barrier (BBB). CONCLUSION: The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacocinética , Quitosano/química , Indoles/administración & dosificación , Indoles/farmacocinética , Nanopartículas/química , Adhesividad , Administración Intranasal , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Portadores de Fármacos/química , Liberación de Fármacos , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Tamaño de la Partícula , Cintigrafía , Ratas , Propiedades de Superficie , Porcinos , Tecnología Farmacéutica/métodos
13.
Drug Dev Ind Pharm ; 40(2): 278-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23369094

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder manifested by cognitive, memory deterioration and variety of neuropsychiatric symptoms. Donepezil is a reversible cholinesterase inhibitor used for the treatment of AD. The purpose of this work is to prepare a nanoparticulate drug delivery system of donepezil using poly(lactic-co-glycolic acid) (PLGA) for sustained release and efficient brain targeting. MATERIALS AND METHODS: PLGA nanoparticles (NPs) were prepared by the solvent emulsification diffusion-evaporation technique and characterized for particle size, particle-size distribution, zeta potential, entrapment efficiency, drug loading and interaction studies and in vivo studies using gamma scintigraphy techniques. RESULTS AND DISCUSSION: The size of drug-loaded NPs (drug polymer ratio 1:1) was found to be 89.67 ± 6.43 nm. The TEM and SEM images of the formulation suggested that particle size was within 20-100 nm and spherical in shape, smooth morphology and coating of Tween-80 on the NPs was clearly observed. The release behavior of donepezil exhibited a biphasic pattern characterized by an initial burst release followed by a slower and continuous sustained release. The biodistribution studies of donepezil-loaded PLGA NPs and drug solution via intravenous route revealed higher percentage of radioactivity per gram in the brain for the nanoparticulate formulation as compared with the drug solution (p < 0.05). CONCLUSION: The high concentrations of donepezil uptake in brain due to coated NPs may help in a significant improvement for treating AD. But further, more extensive clinical studies are needed to check and confirm the efficacy of the prepared drug delivery system.


Asunto(s)
Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Indanos/farmacocinética , Ácido Láctico/farmacocinética , Nanopartículas/metabolismo , Piperidinas/farmacocinética , Ácido Poliglicólico/farmacocinética , Animales , Encéfalo/metabolismo , Donepezilo , Indanos/administración & dosificación , Ácido Láctico/administración & dosificación , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Piperidinas/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-Dawley , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
14.
Expert Opin Drug Discov ; 19(3): 303-316, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112196

RESUMEN

INTRODUCTION: Owing to limited efficient treatment strategies for highly prevalent and distressing Parkinson's disease (PD), an impending need emerged for deciphering new modes and mechanisms for effective management. SH-SY5Y-based in vitro neuronal models have emerged as a new possibility for the elucidation of cellular and molecular processes in the pathogenesis of PD. SH-SY5Y cells are of human origin, adhered to catecholaminergic neuronal attributes, which consequences in imparting wide acceptance and significance to this model over conventional in vitro PD models for high-throughput screening of therapeutics. AREAS COVERED: Herein, the authors review the SH-SY5Y cell line and its value to PD research. The authors also provide the reader with their expert perspectives on how these developments can lead to the development of new impactful therapeutics. EXPERT OPINION: Encouraged by recent research on SH-SY5Y cell lines, it was envisaged that this in vitro model can serve as a primary model for assessing efficacy and toxicity of new therapeutics as well as for nanocarriers' capacity in delivering therapeutic agents across BBB. Considering the proximity with human neuronal environment as in pathogenic PD conditions, SH-SY5Y cell lines vindicated consistency and reproducibility in experimental results. Accordingly, exploitation of this standardized SH-SY5Y cell line can fast-track the drug discovery and development path for novel therapeutics.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Línea Celular Tumoral , Enfermedad de Parkinson/tratamiento farmacológico , Reproducibilidad de los Resultados , Neuroblastoma/metabolismo , Neuroblastoma/patología , Descubrimiento de Drogas
15.
Discov Oncol ; 15(1): 257, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960937

RESUMEN

To address the prevalent genistein (GST) metabolism and inadequate intestinal absorption, an oral long-acting and gastric in-situ gelling gel was designed to encapsulate and localize the intestinal release of the loaded genistein-ginseng (GST-GNS) solid dispersion. Because of the high breast perfusion of GST upon oral absorption, the GST-GNS solid dispersion was developed to enhance GST's dissolution and penetration while offering a synergistic impact against breast cancer (BC). Physiochemical analysis of the GST-GNS solid dispersion, release analysis, gel characterizations, storage stability, penetration, and in vitro cytotoxicity studies were carried out. GST-GNS solid dispersion showed improved dissolution and penetration as compared to raw GST. GST-GNS solid dispersion homogenous shape particles and hydrophilic contacts were revealed by scanning electron microscopy and Fourier Transform-Infrared analysis, respectively. GST-GNS solid dispersion's diffractogram shows the amorphous character. A second modification involved creating a gastric in-situ gelling system loaded with GST-GNS solid dispersion. This system demonstrated improved GST penetration employing the solid dispersion, as well as the localizing of the GST release at the intestinal media and antitumor synergism against BC. For a better therapeutic approach for BC, the innovative oral GST long-acting gel encasing the GST-GNS solid dispersion would be recommended.

16.
Pharmaceutics ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38931960

RESUMEN

The journal retracts the article, "Fabrication, Optimization, and Evaluation of Rotigotine-Loaded Chitosan Nanoparticles for Nose-To-Brain Delivery" [...].

17.
18.
Cureus ; 16(4): e58981, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38800168

RESUMEN

Type 1 diabetes mellitus is an autoimmune condition characterized by insulin deficiency resulting from loss of function of beta cells in the pancreas, leading to hyperglycemia and associated long-term systemic complications and even death. Immunotherapy demonstrates beta cell function-preserving potential; however, its impact on C-peptide levels, a definitive biomarker of beta cell function, and endogenous insulin secretion remain unclear. A systematic review of various immunotherapeutic interventions is hence needed for a comprehensive assessment of their effectiveness as well as identifying research gaps and influencing future research and clinical decisions. An extensive literature search was done in PubMed, Scopus, and Cochrane Library databases using precise keywords and filters to identify relevant studies. Three independent reviewers assessed eligibility according to predetermined eligibility criteria, and data was extracted. The Cochrane risk of bias assessment tool (RoB 2.0) was used to evaluate the quality and validity of the included studies. A senior reviewer resolved discrepancies and differences of opinion between independent reviewers. A total of 11 studies were included, with 1464 study participants. Both Phase II and III trials were included. Within the included studies, four studies assessed the anti-CD3 monoclonal antibody otelixizumab as an intervention. Another anti-CD3 monoclonal antibody, teplizumab, was assessed as an intervention in four studies, whereas two studies assessed the anti-CD20 antibody rituximab and one study assessed abatacept as its interventional drug. Otelixizumab demonstrated benefits at higher doses but was associated with adverse effects like Ebstein-Barr virus reactivation and cytomegalovirus infection, while at lower doses it failed to show a significant difference in C-peptide levels or glycosylated hemoglobin (HbA1c). Teplizumab, on the other hand, showed promise in reducing C-peptide loss and exogenous insulin requirements and was associated with adverse events such as rash, lymphopenia, urinary tract infection, and cytokine release syndrome. However, these reactions were only associated with therapy initiation, and they subsided on their own. Rituximab improved C-peptide responses, and abatacept therapy demonstrated reduced loss of C-peptide, improved C-peptide levels, and lowered HbA1c. Teplizumab, rituximab, otelixizumab, and abatacept show potential for preserving beta cell function by reducing C-peptide loss in patients with type I diabetes mellitus. However, careful monitoring of adverse reactions, particularly viral infections and cytokine release syndrome, is necessary for the safe implementation of these therapies.

19.
Pharmaceutics ; 16(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399351

RESUMEN

The journal retracts the article, "Fluoxetine Ecofriendly Nanoemulsion Enhances Wound Healing in Diabetic Rats: In Vivo Efficacy Assessment" [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA