Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Opt Express ; 32(10): 17479-17480, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858930

RESUMEN

This erratum corrects errors that appear in Opt. Express31, 5042 (2023).10.1364/OE.480301.

2.
Opt Express ; 31(3): 5042-5055, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785456

RESUMEN

Dual-comb spectroscopy measures greenhouse gas concentrations over kilometers of open air with high precision. However, the accuracy of these outdoor spectra is challenging to disentangle from the absorption model and the fluctuating, heterogenous concentrations over these paths. Relative to greenhouse gases, O2 concentrations are well-known and evenly mixed throughout the atmosphere. Assuming a constant O2 background, we can use O2 concentration measurements to evaluate the consistency of open-path dual-comb spectroscopy with laboratory-derived absorption models. To this end, we construct a dual-comb spectrometer spanning 1240 nm to 1700nm, which measures O2 absorption features in addition to CO2 and CH4. O2 concentration measurements across a 560 m round-trip outdoor path reach 0.1% precision in 10 minutes. Over seven days of shifting meteorology and spectrometer conditions, the measured O2 has -0.07% mean bias, and 90% of the measurements are within 0.4% of the expected hemisphere-average concentration. The excursions of up to 0.4% seem to track outdoor temperature and humidity, suggesting that accuracy may be limited by the O2 absorption model or by water interference. This simultaneous O2, CO2, and CH4 spectrometer will be useful for measuring accurate CO2 mole fractions over vertical or many-kilometer open-air paths, where the air density varies.

3.
Phys Rev Lett ; 129(20): 207401, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461997

RESUMEN

Two-dimensional terahertz-terahertz-Raman spectroscopy can provide insight into the anharmonicities of low-energy phonon modes-knowledge of which can help develop strategies for coherent control of material properties. Measurements on LiNbO_{3} reveal THz and Raman nonlinear transitions between the E(TO_{1}) and E(TO_{3}) phonon polaritons. Distinct coherence pathways are observed with different THz polarizations. The observed pathways suggest that the origin of the third-order nonlinear responses is due to mechanical anharmonicities, as opposed to electronic anharmonicities. Further, we confirm that the E(TO_{1}) and E(TO_{3}) phonon polaritons are excited through resonant one-photon THz excitation.

4.
J Phys Chem A ; 123(33): 7278-7287, 2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31329439

RESUMEN

Nonlinear THz-THz-Raman (TTR) liquid spectroscopy offers new possibilities for studying and understanding condensed-phase chemical dynamics. Although TTR spectra carry rich information about the systems under study, the response is encoded in a three-point correlation function comprising of both dipole and polarizability elements. Theoretical methods are necessary for the interpretation of the experimental results. In this work, we study the liquid-phase dynamics of bromoform, a polarizable molecule with a strong TTR response. Previous work based on reduced density matrix (RDM) simulations suggests that unusually large multiquanta dipole matrix elements are needed to understand the measured spectrum of bromoform. Here, we demonstrate that a self-consistent definition of the time coordinates with respect to the reference pulse leads to a simplified experimental spectrum. Furthermore, we analytically derive a parametrization for the RDM model by integrating the dipole and polarizability elements to the 4th order in the normal modes, and we enforce inversion symmetry in the calculations by numerically canceling the components of the response that are even with respect to the field. The resulting analysis eliminates the need to invoke large multiquanta dipole matrix elements to fit the experimental spectrum; instead, the experimental spectrum is recovered using RDM simulations with dipole matrix parameters that are in agreement with independent ab initio calculations. The fundamental interpretation of the TTR signatures in terms of coupled intramolecular vibrational modes remains unchanged from the previous work.

5.
Phys Chem Chem Phys ; 18(32): 22565-72, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27472828

RESUMEN

Previous theoretical work on the ethanol-methanol dimer has been inconclusive in predicting the preferred hydrogen bond donor/acceptor configuration. Here, we report the microwave spectrum of the dimer using a chirped pulse Fourier transform microwave spectrometer from 8-18 GHz. In an argon-backed expansion, 50 transitions have been assigned to a trans-ethanol-acceptor/methanol-donor structure that is likely stabilized by a secondary weak C-HO hydrogen bond. A higher energy conformer was observed in a helium-backed expansion and tentatively assigned to a gauche-ethanol-acceptor/methanol-donor structure. No ethanol-donor/methanol-acceptor dimers have been found, suggesting such interactions are energetically disfavored. A preliminary analysis of the A-E splitting due to the internal rotation of the methanol methyl group in the ground state species is also presented. We find evidence of the Ubbelohde effect in the measured A-E splittings of three deuterated isotopologues and the normal species of this conformer.

6.
Phys Chem Chem Phys ; 19(1): 568-573, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27918034

RESUMEN

The molecular complex between iso-propanol and water has been investigated by Fourier transform microwave spectroscopy. Two distinct rotational spectra have been assigned, corresponding to two different isomers of the adduct. In both cases the water molecule acts as a proton donor to the alcoholic oxygen atom of iso-propanol in its gauche arrangement. The isomer in which the water molecule is oriented along the symmetry plane of the iso-propanol molecule (inner) is more stable than the second isomer, where the water is positioned outside the iso-propanol symmetry plane (outer). The rotational transitions of the inner isomer display a doubling, due to the two equivalent minima related to the internal rotation of the hydroxyl group (concerted with a rearrangement of the water unit). The tunneling splitting has been determined to be 25.16(8) GHz, corresponding to a B2 barrier of ∼440 cm-1.

7.
Bioconjug Chem ; 25(8): 1444-52, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24960223

RESUMEN

Heparin is a sulfated glycosaminoglycan that is widely used as an anticoagulant. It is typically extracted from porcine or bovine sources to yield a heterogeneous mixture that varies both in molecular weight and in degree of sulfation. This heterogeneity, coupled with concern for contamination, has led to widespread interest in developing safer alternatives. Described herein are sulfated bacteriophage Qß virus-like particles (VLPs) that elicit heparin-like anticoagulant activity. Sulfate groups were appended to the VLP by synthesis of single- and triple-sulfated ligands that also contained azide groups. Following conversion of VLP surface lysine groups to alkynes, the sulfated ligands were attached to the VLP via copper-catalyzed azide-alkyne cycloaddition (CuAAC). MALDI-MS analysis of the intermediate alkyne VLP indicated that the majority of the coat proteins contained 5-7 of the alkyne linkers; similar analysis of the intermediate alkyne particles conjugated to a fluorescein azide suggest that nearly the same number of attachment points (3-6) are modified via CuAAC. Analysis by SDS-PAGE with fluorescent staining indicated altered migration patterns for the various constructs: compared to the wild-type nanoparticle, the modified coat proteins appeared to migrate farther toward the positive pole in the gel, with coat proteins displaying the triple-sulfated ligand migrating significantly farther. Clotting activity analyzed by activated partial thrombin time (APTT) assay showed that the sulfated particles were able to perturb coagulation, with VLPs displaying the triple-sulfated ligand approximately as effective as heparin on a per mole basis; this activity could be partially reversed by protamine. ELISA experiments to assess the response of the complement system to the VLPs indicate that sulfating the particles may reduce complement activation.


Asunto(s)
Allolevivirus/química , Anticoagulantes/química , Anticoagulantes/farmacología , Heparina/química , Heparina/farmacología , Nanopartículas/química , Sulfatos/química , Alquinos/química , Azidas/química , Coagulación Sanguínea/efectos de los fármacos , Proteínas de la Cápside/química , Activación de Complemento/efectos de los fármacos , Cobre/química , Reacción de Cicloadición , Humanos , Ligandos , Modelos Moleculares , Tiempo de Tromboplastina Parcial , Conformación Proteica
8.
Atmos Meas Tech ; 16(17)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37961051

RESUMEN

We present an open-path mid-infrared dual-comb spectroscopy (DCS) system capable of precise measurement of the stable water isotopologues H216O and HD16O. This system ran in a remote configuration at a rural test site for 3.75 months with 60% uptime and achieved a precision of < 2‰ on the normalized ratio of H216O and HD16O (δD) in 1000s. Here, we compare the δD values from the DCS system to those from the National Ecological Observatory Network (NEON) isotopologue point sensor network. Over the multi-month campaign, the mean difference between the DCS δD values and the NEON δD values from a similar ecosystem is < 2‰ with a standard deviation of 18‰, which demonstrates the inherent accuracy of DCS measurements over a variety of atmospheric conditions. We observe time-varying diurnal profiles and seasonal trends that are mostly correlated between the sites on daily timescales. This observation motivates the development of denser ecological monitoring networks aimed at understanding regional- and synoptic-scale water transport. Precise and accurate open-path measurements using DCS provide new capabilities for such networks.

9.
Front Chem ; 11: 1202255, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332891

RESUMEN

We present results from a field study monitoring methane and volatile organic compound emissions near an unconventional oil well development in Northern Colorado from September 2019 to May 2020 using a mid-infrared dual-comb spectrometer. This instrument allowed quantification of methane, ethane, and propane in a single measurement with high time resolution and integrated path sampling. Using ethane and propane as tracer gases for methane from oil and gas activity, we observed emissions during the drilling, hydraulic fracturing, millout, and flowback phases of well development. Large emissions were seen in drilling and millout phases and emissions decreased to background levels during the flowback phase. Ethane/methane and propane/methane ratios varied widely throughout the observations.

10.
J Phys Chem B ; 124(40): 8904-8908, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32897705

RESUMEN

We demonstrate that halogenated methane (HM) two-dimensional (2D)-terahertz-terahertz-Raman (2D-TTR) spectra are determined by the complicated structure of the instrument response function (IRF) along ω1 and by the molecular coherences along ω2. Experimental improvements have helped increase the resolution and dynamic range of the measurements, including accurate THz pulse shape characterization. Sum-frequency excitations convolved with the IRF are found to quantitatively reproduce the 2D-TTR signal. A new reduced density matrix model that incorporates sum-frequency pathways, with linear and harmonic operators, fully supports this (re)interpretation of the 2D-TTR spectra.

11.
Rev Sci Instrum ; 90(5): 053107, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31153227

RESUMEN

We report on the design and performance of an echelon-based single shot visible/near-infrared spectrometer with adequate sensitivity to measure the nonlinear optical and terahertz Kerr effects in neat molecular liquids at room temperature. Useful molecular information spanning tens of picoseconds can be measured in just a few milliseconds, and the signal-to-noise performance scales favorably with respect to the standard stage scan technique. These results demonstrate the viability of stage-free nonlinear Kerr effect measurements and provide a route for improvements to the speed of future multidimensional Kerr effect studies.

12.
J Inorg Biochem ; 129: 30-4, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013063

RESUMEN

Electrochemical methods continue to present an attractive means for achieving in vitro biocatalysis with cytochromes P450; however understanding fully the nature of electrode-bound P450 remains elusive. Herein we report thermodynamic parameters using electrochemical analysis of full-length mammalian microsomal cytochrome P450 2B4 (CYP 2B4) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of CYP 2B4-DDAB films on silica slides reveal an absorption maximum at 418nm, characteristic of low-spin, six-coordinate, water-ligated Fe(III) heme in P450. The Fe(III/II) and Fe(II/I) redox couples (E1/2) of substrate-free CYP 2B4 measured by cyclic voltammetry are -0.23V and -1.02V (vs. SCE, or 14mV and -776mV vs. NHE) at 21°C. The standard heterogeneous rate constant for electron transfer from the electrode to the heme for the Fe(III/II) couple was estimated at 170s(-1). Experiments indicate that the system is capable of catalytic reduction of dioxygen, however substrate oxidation was not observed. From the variation of E1/2 with temperature (18-40°C), we have measured entropy and enthalpy changes that accompany heme reduction, -151Jmol(-1)K(-1) and -46kJmol(-1), respectfully. The corresponding entropy and enthalpy values are less for the six-coordinate low-spin, imidazole-ligated enzyme (-59Jmol(-1)K(-1) and -18kJmol(-1)), consistent with limited conformational changes upon reduction. These thermodynamic parameters are comparable to those measured for bacterial P450 from Bacillus megaterium (CYP BM3), confirming our prior reports that the surfactant environment exerts a strong influence on the redox properties of the heme.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/química , Hemo/química , Membranas Artificiales , Compuestos de Amonio Cuaternario/química , Animales , Familia 2 del Citocromo P450 , Técnicas Electroquímicas , Humanos , Oxidación-Reducción , Dióxido de Silicio/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA