Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Langmuir ; 37(21): 6578-6587, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009994

RESUMEN

Long-term stability and function are key challenges for optical nanosensors operating in complex biological environments. While much focus is rightly placed on issues related to specificity, sensitivity, reversibility, and response time, many nanosensors are not capable of transducing accurate results over prolonged time periods. Sensors could fail over time due to the degradation of scaffold material, degradation of signaling dyes and components, or a combination of both. It is critical to investigate how such degradative processes affect sensor output, as the consequences could be severe. Herein, we used fluorescent core-shell organosilica pH nanosensors as a model system, incubating them in a range of common aqueous solutions over time at different temperatures, and then searched for changes in fluorescence signal, particle size, and evidence of silica degradation. We found that these ratiometric nanosensors produced stable optical signals after aging for 30 days at 37 °C in standard saline buffers with and without 10% fetal bovine serum, and without any evidence of material degradation. Next, we evaluated their performance as real-time pH nanosensors in bacterial suspension cultures, observing a close agreement with a pH electrode for control nanosensors, yet observing obvious deviations in signal based on the aging conditions. The results show that while the organosilica scaffold does not degrade appreciably over time, careful selection of dyes and further systematic investigations into the effects of salt and protein levels are required to realize long-term stable nanosensors.

2.
Langmuir ; 35(36): 11679-11689, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31407904

RESUMEN

Manipulating the surface properties of materials via the application of coatings is a widely used strategy to achieve desired interfacial interactions, implicitly assuming that the interfacial forces of coated samples are determined exclusively by the surface properties of the coatings. However, interfacial interactions between materials and their environments operate over finite length scales. Thus, the question addressed in this study is whether interactions associated with bulk substrate materials could act through thin coatings or, conversely, how thick a coating needs to be to completely screen subsurface forces contributed by underlying substrates. Plasma polymer layers were deposited on silicon wafer substrates from ethanol vapor, with identical chemical composition, ultrasmooth surfaces, and varying thicknesses. Using colloid-probe atomic force microscopy, electrical double-layer forces were determined in solutions of various ionic strengths and fitted using the Derjaguin-Landau-Verwey-Overbeek theory. For the thicker ethanol plasma polymers, the fitted surface potentials reflected the presence of surface carboxylate groups and were invariant with thickness. In contrast, for coatings <18 nm thick, the surface potentials increased steadily with decreasing film thickness; the measured electrical double-layer forces contained contributions from both the coating and the substrate. Theoretical calculations were in agreement with this model. Thus, our observations indicate that the higher surface potential of the underlying SiO2 surface can influence the interactions between a colloid particle and the multilayer structure if coatings are sufficiently thin. Such superposition needs to be factored into the design of coatings aimed at the control of material interactions via surface forces.

3.
Biomacromolecules ; 20(2): 813-825, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30589535

RESUMEN

Electrospun ultrafine fibers prepared using a blend of poly(lactide- co-glycolide) (PLGA) and bromine terminated poly(l-lactide) (PLA-Br), were surface modified using surface-initiated (SI) Cu(0) mediated polymerization. Copolymers based on N-acryloxysuccinimide (NAS) and a low fouling monomer (either N, N-dimethylacrylamide (DMA), N-(2-hydroxypropyl)acrylamide (HPA), or N-acryloylmorpholine (NAM)) were grafted from the fiber surface to impart surface functionality and to reduce nonspecific protein adsorption. Inclusion of the functional NAS monomer facilitated the conjugation of a nonbioactive cyclic RAD peptide and a bioactive cyclic RGD peptide, the latter expected to facilitate cell adhesion through its affinity for the αvß3 integrin receptor. A detailed analysis of the surface of the electrospun fiber scaffolds in nongrafted form compared to the surface functionalized state is presented. Characteristic amino acid peaks are observed for both conjugated RGD and RAD peptides. Cell culture experiments confirmed cell specific attachment mediated through the presence of the bioactive RGD peptide mainly at high surface density.


Asunto(s)
Adhesión Celular , Nanofibras/química , Andamios del Tejido/química , Resinas Acrílicas/química , Animales , Bromuros/química , Línea Celular , Ratones , Oligopéptidos/química , Oligopéptidos/metabolismo , Poliésteres/química , Unión Proteica
4.
J Antimicrob Chemother ; 71(2): 413-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490013

RESUMEN

OBJECTIVES: Biofilm-related human infections have high mortality rates due to drug resistance. Cohabitation of diverse microbes in polymicrobial biofilms is common and these infections present additional challenges for treatment compared with monomicrobial biofilms. Here, we address this therapeutic gap by assessing the potential of a new class of antimicrobial agents, guanylated polymethacrylates, in the treatment of polymicrobial biofilms built by two prominent human pathogens, the fungus Candida albicans and the bacterium Staphylococcus aureus. METHODS: We used imaging and quantitative methods to test the antibiofilm efficacy of guanylated polymethacrylates, a new class of drugs that structurally mimic antimicrobial peptides. We further compared guanylated polymethacrylates with first-line antistaphylococcal and anti-Candida agents used as combinatorial therapy against polymicrobial biofilms. RESULTS: Guanylated polymethacrylates were highly effective as a sole agent, killing both C. albicans and S. aureus when applied to established polymicrobial biofilms. Furthermore, they outperformed multiple combinations of current antimicrobial drugs, with one of the tested compounds killing 99.98% of S. aureus and 82.2% of C. albicans at a concentration of 128 mg/L. The extracellular biofilm matrix provided protection, increasing the MIC of the polymethacrylates by 2-4-fold when added to planktonic assays. Using the C. albicans bgl2ΔΔ mutant, we implicate matrix polysaccharide ß-1,3 glucan in the mechanism of protection. Data for two structurally distinct polymers suggest that this mechanism could be minimized through chemical optimization of the polymer structure. Finally, we demonstrate that a potential application for these polymers is in antimicrobial lock therapy. CONCLUSIONS: Guanylated polymethacrylates are a promising lead for the development of an effective monotherapy against C. albicans/S. aureus polymicrobial biofilms.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Ácidos Polimetacrílicos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos
5.
Macromol Rapid Commun ; 37(13): 1079-86, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27145108

RESUMEN

Self-initiated photografting polymerization is used to couple the polymerizable initiator monomer 2-(2-chloropropanoyloxy)ethyl acrylate to a range of polymeric substrates. The technique requires only UV light to couple the initiator to surfaces. The initiator surface density can be varied by inclusion of a diluent monomer or via selection of initiator and irradiation parameters. The functionality of the initiator surface is demonstrated by subsequent surface-initiated atom transfer radical polymerization. Surfaces are characterized by x-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM), and UV-induced changes to the initiator are assessed by (1) H NMR and gel permeation chromatography (GPC). This is the first time this one-reactant one-step technique has been demonstrated for creating an initiator surface of variable density.


Asunto(s)
Acrilatos/química , Polimerizacion , Polímeros/síntesis química , Microscopía de Fuerza Atómica , Procesos Fotoquímicos , Espectroscopía de Fotoelectrones , Polímeros/química , Propiedades de Superficie , Rayos Ultravioleta
6.
Biomacromolecules ; 16(7): 2109-18, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26020464

RESUMEN

While electrospun fibers are of interest as scaffolds for tissue engineering applications, nonspecific surface interactions such as protein adsorption often prevent researchers from controlling the exact interactions between cells and the underlying material. In this study we prepared electrospun fibers from a polystyrene-based macroinitiator, which were then grafted with polymer brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). These brush coatings incorporated a trimethylsilyl-protected PEG-alkyne monomer, allowing azide functional molecules to be covalently attached, while simultaneously reducing nonspecific protein adsorption on the fibers. Cells were able to attach and spread on fibrous substrates functionalized with a pendant RGD-containing peptide, while spreading was significantly reduced on nonfunctionalized fibers and those with the equivalent RGE control peptide. This effect was observed both in the presence and absence of serum in the culture media, indicating that protein adsorption on the fibers was minimal and cell adhesion within the fibrous scaffold was mediated almost entirely through the cell-adhesive RGD-containing peptide.


Asunto(s)
Fibroblastos/fisiología , Poliestirenos/química , Andamios del Tejido/química , Adsorción , Animales , Adhesión Celular , Línea Celular , Fibroblastos/citología , Ensayo de Materiales , Ratones , Propiedades de Superficie
7.
Anal Chem ; 86(4): 2131-7, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24483846

RESUMEN

This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (D < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.


Asunto(s)
Cromatografía en Gel/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Ácidos Polimetacrílicos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Peso Molecular , Ácidos Polimetacrílicos/química
8.
Langmuir ; 30(39): 11714-22, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25195610

RESUMEN

The ability to control protein and cell positioning on a microscopic scale is crucial in many biomedical applications, such as single cell studies. We have developed and investigated the grafting of poly(ethylene glycol) (PEG) brushes onto poly(d,l-lactide-co-glycolide) (PLGA) thin films, which can be micropatterned by exploiting their spontaneous dewetting on top of polystyrene (PS) films. Dense PEG brushes with excellent protein repellence were achieved on PLGA by using cloud point grafting conditions, and selective adsorption of proteins on the micropatterned substrates was achieved by exploiting the different affinity protein adsorption onto the PEG brushes and the PS holes. PEG-grafted PLGA films showed better resistance against spontaneous degradation in buffer than bare PLGA films, due to passivation by the thin PEG coating. The simplicity of dewetting and subsequent grafting approaches, coupled with the ability to coat and pattern nonplanar substrates give rise to possible applications of PEG-grafted PLGA films in single cell studies and cell cultures for tissue engineering.


Asunto(s)
Ácido Láctico/química , Polietilenglicoles/química , Ácido Poliglicólico/química , Albúmina Sérica Bovina/química , Adsorción , Aminas/química , Animales , Bovinos , Hidrólisis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Propiedades de Superficie
9.
Biomacromolecules ; 15(9): 3259-66, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25126835

RESUMEN

Effective control over biointerfacial interactions is essential for a broad range of biomedical applications. At this point in time, only a relatively small range of radically polymerizable monomers have been described that are able to generate low fouling polymer materials and surfaces. The most important examples that have been successfully used in the context of the reduction of nonspecific protein adsorption and subsequent cell attachment include PEG-based monomers such as poly(ethylene glycol) methacrylate (PEGMA), zwitterionic monomers such as 2-methacryloyloxyethyl phosphorylcholine and noncharged monomers such as acrylamide and N-(2-hydroxypropyl) methacrylamide (HPMAm). However, issues such as oxidative degradation and poor polymerization characteristics limit the applicability of most of these candidates. Here we have synthesized the monomer N-(2-hydroxypropyl) acrylamide (HPAm), examined its polymerization kinetics and evaluated its suitability for RAFT mediated polymerization in comparison to HPMAm. We also synthesized hydrogels using HPMAm and HPAm and evaluated the ability of HPAm polymers to occlude protein adsorption and cell attachment. In RAFT-controlled polymerization, much faster (8×) polymerization was observed for HPAm relative to HPMAm and better control was achieved over the molecular weight distribution. The performance of hydrogels prepared from HPAm in the prevention of protein adsorption and cellular attachment was equivalent to or better than that observed for materials made from HPMAm and PEG. These results open the door for HPAm based polymers in applications where effective control over biointerfacial interactions is required.


Asunto(s)
Fibroblastos/metabolismo , Hidrogeles , Metacrilatos , Polietilenglicoles , Proteínas/química , Adsorción , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Fibroblastos/citología , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Metacrilatos/síntesis química , Metacrilatos/química , Metacrilatos/farmacología , Ratones , Oxidación-Reducción , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polietilenglicoles/farmacología
10.
Biofabrication ; 16(3)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38565131

RESUMEN

Extrusion-based bioprinting is a promising technology for the fabrication of complex three-dimensional (3D) tissue-engineered constructs. To further improve the printing accuracy and provide mechanical support during the printing process, hydrogel-based support bath materials have been developed. However, the gel structure of some support bath materials can be compromised when exposed to certain bioink crosslinking cues, hence their compatibility with bioinks can be limited. In this study, a xanthan gum-based composite support material compatible with multiple crosslinking mechanisms is developed. Different support bath materials can have different underlying polymeric structures, for example, particulate suspensions and polymer solution with varying supramolecular structure) and these properties are governed by a variety of different intermolecular interactions. However, common rheological behavior can be expected because they have similar demonstrated performance and functionality. To provide a detailed exploration/identification of the common rheological properties expressed by different support bath materials from a unified perspective, benchmark support bath materials from previous studies were prepared. A comparative rheological study revealed both the structural and shear behavior characteristics shared by support bath materials, including yield stress, gel complex moduli, shear-thinning behavior, and self-healing properties. Gel structural stability and functionality of support materials were tested in the presence of various crosslinking stimuli, confirming the versatility of the xanthan-based support material. We further investigated the effect of support materials and the diameter of extrusion needles on the printability of bioinks to demonstrate the improvement in bioink printability and structural integrity. Cytotoxicity and cell encapsulation viability tests were carried out to confirm the cell compatibility of the xanthan gum-based support bath material. We propose and demonstrate the versatility and compatibility of the novel support bath material and provide detailed new insight into the essential properties and behavior of these materials that serve as a guide for further development of support bath-based 3D bioprinting.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Polisacáridos Bacterianos , Reología , Impresión Tridimensional , Bioimpresión/métodos , Hidrogeles/química , Andamios del Tejido/química
11.
Acta Biomater ; 181: 46-66, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38697381

RESUMEN

Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.


Asunto(s)
Bioimpresión , Músculo Esquelético , Impresión Tridimensional , Regeneración , Humanos , Músculo Esquelético/fisiología , Bioimpresión/métodos , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
12.
ACS Sens ; 9(5): 2383-2394, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38687178

RESUMEN

Oxygen plays a central role in aerobic metabolism, and while many approaches have been developed to measure oxygen concentration in biological environments over time, monitoring spatiotemporal changes in dissolved oxygen levels remains challenging. To address this, we developed a ratiometric core-shell organosilica nanosensor for continuous, real-time optical monitoring of oxygen levels in biological environments. The nanosensors demonstrate good steady state characteristics (KpSV = 0.40 L/mg, R2 = 0.95) and respond reversibly to changes in oxygen concentration in buffered solutions and report similar oxygen level changes in response to bacterial cell growth (Escherichia coli) in comparison to a commercial bulk optode-based sensing film. We further demonstrated that the oxygen nanosensors could be distributed within a growing culture of E. coli and used to record oxygen levels over time and in different locations within a static culture, opening the possibility of spatiotemporal monitoring in complex biological systems.


Asunto(s)
Escherichia coli , Oxígeno , Oxígeno/metabolismo , Oxígeno/análisis , Escherichia coli/metabolismo , Escherichia coli/aislamiento & purificación , Técnicas Biosensibles/métodos , Nanotecnología , Compuestos de Organosilicio/química
13.
Biomacromolecules ; 14(11): 4021-31, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24099527

RESUMEN

We have synthesized a series of copolymers containing both positively charged (amine, guanidine) and hydrophobic side chains (amphiphilic antimicrobial peptide mimics). To investigate the structure-activity relationships of these polymers, low polydispersity polymethacrylates of varying but uniform molecular weight and composition were synthesized, using a reversible addition-fragmentation chain transfer (RAFT) approach. In a facile second reaction, pendant amine groups were converted to guanidines, allowing for direct comparison of cation structure on activity and toxicity. The guanidine copolymers were much more active against Staphylococcus epidermidis and Candida albicans compared to the amine analogues. Activity against Staphylococcus epidermidis in the presence of fetal bovine serum was only maintained for guanidine copolymers. Selectivity for bacterial over mammalian cells was assessed using hemolytic and hemagglutination toxicity assays. Guanidine copolymers of low to moderate molecular weight and hydrophobicity had high antimicrobial activity with low toxicity. Optimum properties appear to be a balance between charge density, hydrophobic character, and polymer chain length. In conclusion, a suite of guanidine copolymers has been identified that represent a new class of antimicrobial polymers with high potency and low toxicity.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Guanidinas/química , Hemólisis/efectos de los fármacos , Ácidos Polimetacrílicos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ácidos Polimetacrílicos/síntesis química , Ácidos Polimetacrílicos/química , Staphylococcus epidermidis/efectos de los fármacos , Relación Estructura-Actividad
14.
Adv Healthc Mater ; 12(28): e2300801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37369123

RESUMEN

The composition, elasticity, and organization of the extracellular matrix within the central nervous system contribute to the architecture and function of the brain. From an in vitro modeling perspective, soft biomaterials are needed to mimic the 3D neural microenvironments. While many studies have investigated 3D culture and neural network formation in bulk hydrogel systems, these approaches have limited ability to position cells to mimic sophisticated brain architectures. In this study, cortical neurons and astrocytes acutely isolated from the brains of rats are bioprinted in a hydrogel to form 3D neuronal constructs. Successful bioprinting of cellular and acellular strands in a multi-bioink approach allows the subsequent formation of gray- and white-matter tracts reminiscent of cortical structures. Immunohistochemistry shows the formation of dense, 3D axon networks. Calcium signaling and extracellular electrophysiology in these 3D neuronal networks confirm spontaneous activity in addition to evoked activities under pharmacological and electrical stimulation. The system and bioprinting approaches are capable of fabricating soft, free-standing neuronal structures of different bioink and cell types with high resolution and throughput, which provide a promising platform for understanding fundamental questions of neural networks, engineering neuromorphic circuits, and for in vitro drug screening.


Asunto(s)
Bioimpresión , Hidrogeles , Ratas , Animales , Hidrogeles/química , Materiales Biocompatibles/química , Neuronas , Matriz Extracelular/química , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/química
15.
Biofabrication ; 14(3)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35545019

RESUMEN

Manyin vitromodels of neural physiology utilize neuronal networks established on two-dimensional substrates. Despite the simplicity of these 2D neuronal networks, substrate stiffness may influence cell morphology, network interactions and how neurons communicate and function. With this perspective, three-dimensional (3D) gel encapsulation is a powerful to recapitulating aspects ofin vivofeatures, yet such an approach is often limited in terms of the level of resolution and feature size relevant for modelling aspects of brain architecture. Here, we report 3D bioplotting of rat primary cortical neural cells using a hydrogel system comprising gelatin norbornene (GelNB) and poly (ethylene glycol) dithiol (PEGdiSH). This bioink benefits from a rapid photo-click chemistry, yielding eight-layer crosshatch neural scaffolds and a filament width of 350µm. The printability of this system depends on hydrogel concentration, printing temperature, extrusion pressure and speed. These parameters were studied via quantitative comparison between rheology and filament dimensions to determine the optimal printing conditions. Under optimal conditions, cell viability of bioprinted primary cortical neurons at day 1 (68 ± 2%) and at day 7 (68 ± 1%) were comparable to the 2D control group (72 ± 7%). The present study relates material rheology and filament dimensions to generate compliant free-standing neural constructs through bioplotting of low-concentration GelNB-PEGdiSH, which may provide a step forward to study 3D neuronal function and network formation.


Asunto(s)
Bioimpresión , Animales , Bioimpresión/métodos , Gelatina , Hidrogeles , Impresión Tridimensional , Ratas , Reología
16.
Front Chem ; 9: 728717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568279

RESUMEN

Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.

17.
Int J Pharm ; 608: 121075, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34481889

RESUMEN

PEGylation is the standard approach for prolonging the plasma exposure of protein therapeutics but has limitations. We explored whether polymers prepared by Reversible Addition-Fragmentation chain-Transfer (RAFT) may provide better alternatives to polyethylene glycol (PEG). Four RAFT polymers were synthesised with varying compositions, molar mass (Mn), and structures, including a homopolymer of N-(2-hydroxypropyl)methacrylamide, (pHPMA) and statistical copolymers of HPMA with poly(ethylene glycol methyl ether acrylate) p(HPMA-co-PEGA); HPMA and N-acryloylmorpholine, p(HPMA-co-NAM); and HPMA and N-isopropylacrylamide, p(HPMA-co-NIPAM). The intravenous pharmacokinetics of the polymers were then evaluated in rats. The in vitro activity and in vivo pharmacokinetics of p(HPMA-co-NIPAM)-conjugated trastuzumab Fab' and full length mAb were then evaluated. p(HPMA-co-NIPAM) prolonged plasma exposure more avidly compared to the other p(HPMA) polymers or PEG, irrespective of molecular weight. When conjugated to trastuzumab-Fab', p(HPMA-co-NIPAM) prolonged plasma exposure of the Fab' similar to PEG-Fab'. The generation of anti-PEG IgM in rats 7 days after intravenous and subcutaneous dosing of p(HPMA-co-NIPAM) conjugated trastuzumab mAb was also examined and was shown to exhibit lower immunogenicity than the PEGylated construct. These data suggest that p(HPMA-co-NIPAM) has potential as a promising copolymer for use as an alternative conjugation strategy to PEG, to prolong the plasma exposure of therapeutic proteins.


Asunto(s)
Polietilenglicoles , Polímeros , Animales , Metacrilatos , Ratas , Trastuzumab
18.
Optom Vis Sci ; 87(11): 839-46, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20818281

RESUMEN

PURPOSE: The purpose of this study was to investigate the effect of lens care products on short-term subjective and physiological performance silicone hydrogel lenses. METHODS: Ten subjects wore either lotrafilcon B or galyfilcon A silicone hydrogel contact lenses soaked in a lens care product containing either Polyquad/Aldox or PHMB or control lenses inserted directly from the pack. Subjects wore the lenses for 6 h. Ocular comfort (graded on a 1 to 10 scale) and ocular physiology were assessed. Unworn but soaked lenses were analyzed for metrological changes, release of excipients into phosphate buffered saline, and changes to their surface chemical composition. RESULTS: None of the lens metrology measures or clinically observed conjunctival or limbal redness changed. Corneal staining was significantly (p < 0.008) raised, albeit to low levels, after 6 h wear for either lens type when soaked in the PHMB solution compared with the control lens (lotrafilcon B 0.4 to 0.9 ± 0.7 to 0.4 vs. 0.1 to 0.4 ± 0.3 to 0.5; galyfilcon A 0.2 to 0.3 ± 0.2 to 0.4 vs. 0.0 ± 0.0). For lotrafilcon B lenses, there were decreases in comfort (p = 0.002), increases in burning/stinging (p = 0.002) after 1 h of wear, and increases in lens awareness on lens insertion (p = 0.0001) when soaked in PHMB. However, lotrafilcon B lenses soaked in Polyquad/Aldox showed increases in burning/stinging after 1 and 6 h (p < 0.008) of lens wear. For galyfilcon A lenses, most significant (p ≤ 0.002) changes to symptomatology occurred after soaking in Polyquad/Aldox solution. More PHMB was released from lotrafilcon B lenses, and more MPDS material was released from galyfilcon A lenses. The surface of galyfilcon A lenses changed but irrespective of lens solution type, whereas the changes to the lens surface was dependent on solution type for lotrafilcon B lenses. CONCLUSIONS: Lens care products can change corneal staining and comfort responses during wear. These changes may be associated with release of material soaked into lenses or changes to the lens surface composition.


Asunto(s)
Soluciones para Lentes de Contacto/farmacología , Lentes de Contacto Hidrofílicos , Hidrogel de Polietilenoglicol-Dimetacrilato , Siliconas , Adulto , Soluciones para Lentes de Contacto/farmacocinética , Lentes de Contacto Hidrofílicos/efectos adversos , Córnea/efectos de los fármacos , Córnea/metabolismo , Ojo/metabolismo , Ojo/patología , Femenino , Humanos , Hidrogeles , Hidroximercuribenzoatos/farmacología , Masculino , Espectroscopía de Fotoelectrones , Polímeros/farmacocinética , Polímeros/farmacología , Propilaminas/farmacocinética , Propilaminas/farmacología , Estudios Prospectivos , Coloración y Etiquetado , Propiedades de Superficie/efectos de los fármacos , Factores de Tiempo , Agudeza Visual
19.
J Colloid Interface Sci ; 580: 690-699, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32712475

RESUMEN

Thin polymeric coatings are commonly used for altering surface properties and modulating the interfacial performance of materials. Possible contributions from the substrate to the interfacial forces and effects are, however, usually ignored and are not well understood, nor is it established how the coating thickness modulates and eventually eliminates contributions from substrates to the van der Waals (vdW) interfacial force. In this study we quantified, by colloid-probe atomic force microscope (AFM) and by theoretical calculations, the interfacial vdW contributions from substrates acting through ethanol plasma polymer (EtOHpp) coatings of a range of thicknesses on Au and Si bulk materials. In approach force curves against EtOHpp-coated Au substrates the magnitude of the vdW force decreased as the EtOHpp coating thickness increased to 18 nm and then plateaued with further increases in coating thickness, providing direct evidence for a contribution to the total interfacial vdW force from the Au substrate acting through thin coatings. The experimental observations accord with theoretical calculations of the thickness dependence of Hamaker coefficients derived from rigorous simulation using the Lifshitz theory. In addition, the measured forces agree well with theoretical predictions including correction for finite roughness. Thus, our experimental and theoretical results establish how the thickness of polymer thin film coatings modulates the total interfacial vdW force and how this can be used to tune the net vdW force so as to either contain a large substrate contribution or arise predominantly from the polymeric overlayer. Our findings enable rational design of coating thickness to tailor interfacial interactions and material performance.

20.
Front Pharmacol ; 11: 654, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528277

RESUMEN

Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA