Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 620(7972): 86-91, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532813

RESUMEN

Electrodeposition of lithium (Li) metal is critical for high-energy batteries1. However, the simultaneous formation of a surface corrosion film termed the solid electrolyte interphase (SEI)2 complicates the deposition process, which underpins our poor understanding of Li metal electrodeposition. Here we decouple these two intertwined processes by outpacing SEI formation at ultrafast deposition current densities3 while also avoiding mass transport limitations. By using cryogenic electron microscopy4-7, we discover the intrinsic deposition morphology of metallic Li to be that of a rhombic dodecahedron, which is surprisingly independent of electrolyte chemistry or current collector substrate. In a coin cell architecture, these rhombic dodecahedra exhibit near point-contact connectivity with the current collector, which can accelerate inactive Li formation8. We propose a pulse-current protocol that overcomes this failure mode by leveraging Li rhombic dodecahedra as nucleation seeds, enabling the subsequent growth of dense Li that improves battery performance compared with a baseline. While Li deposition and SEI formation have always been tightly linked in past studies, our experimental approach enables new opportunities to fundamentally understand these processes decoupled from each other and bring about new insights to engineer better batteries.

2.
J Am Chem Soc ; 145(5): 2860-2869, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715560

RESUMEN

Photoelectrochemical solar fuel generation at the semiconductor/liquid interface consists of multiple elementary steps, including charge separation, recombination, and catalytic reactions. While the overall incident light-to-current conversion efficiency (IPCE) can be readily measured, identifying the microscopic efficiency loss processes remains difficult. Here, we report simultaneous in situ transient photocurrent and transient reflectance spectroscopy (TRS) measurements of titanium dioxide-protected gallium phosphide photocathodes for water reduction in photoelectrochemical cells. Transient reflectance spectroscopy enables the direct probe of the separated charge carriers responsible for water reduction to follow their kinetics. Comparison with transient photocurrent measurement allows the direct probe of the initial charge separation quantum efficiency (ϕCS) and provides support for a transient photocurrent model that divides IPCE into the product of quantum efficiencies of light absorption (ϕabs), charge separation (ϕCS), and photoreduction (ϕred), i.e., IPCE = ϕabsϕCSϕred. Our study shows that there are two general key loss pathways: recombination within the bulk GaP that reduces ϕCS and interfacial recombination at the junction that decreases ϕred. Although both loss pathways can be reduced at a more negative applied bias, for GaP/TiO2, the initial charge separation loss is the key efficiency limiting factor. Our combined transient reflectance and photocurrent study provides a time-resolved view of microscopic steps involved in the overall light-to-current conversion process and provides detailed insights into the main loss pathways of the photoelectrochemical system.

3.
Nano Lett ; 21(13): 5881-5887, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34196567

RESUMEN

Structural polymorphism is known for many bulk materials; however, on the nanoscale metastable polymorphs tend to form more readily than in the bulk, and with more structural variety. One such metastable polymorph observed for colloidal Ag2Se nanocrystals has traditionally been referred to as the "tetragonal" phase. While there are reports on the chemistry and properties of this metastable polymorph, its crystal structure, and therefore electronic structure, has yet to be determined. We report that an anti-PbCl2-like structure type (space group P21/n) more accurately describes the powder X-ray diffraction and X-ray total scattering patterns of colloidal Ag2Se nanocrystals prepared by several different methods. Density functional theory (DFT) calculations indicate that this anti-PbCl2-like Ag2Se polymorph is a dynamically stable, narrow-band-gap semiconductor. The anti-PbCl2-like structure of Ag2Se is a low-lying metastable polymorph at 5-25 meV/atom above the ground state, depending on the exchange-correlation functional used.

4.
Nano Lett ; 21(24): 10172-10177, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34865498

RESUMEN

With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the "electron wind" has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical "wind force" model and to new opportunities for optimizing electromigration-resistant IC design.


Asunto(s)
Electrones
5.
Nano Lett ; 21(19): 8017-8024, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34569798

RESUMEN

Nanoscale oxide layer protected semiconductor photoelectrodes show enhanced stability and performance for solar fuels generation, although the mechanism for the performance enhancement remains unclear due to a lack of understanding of the microscopic interfacial field and its effects. Here, we directly probe the interfacial fields at p-GaP electrodes protected by n-TiO2 and its effect on charge carriers by transient reflectance spectroscopy. Increasing the TiO2 layer thickness from 0 to 35 nm increases the field in the GaP depletion region, enhancing the rate and efficiency of interfacial electron transfer from the GaP to TiO2 on the ps time scale as well as retarding interfacial recombination on the microsecond time scale. This study demonstrates a general method for providing a microscopic view of the photogenerated charge carrier's pathway and loss mechanisms from the bulk of the electrode to the long-lived separated charge at the interface that ultimately drives the photoelectrochemical reactions.


Asunto(s)
Óxidos , Titanio , Electrodos , Luz Solar
6.
Nature ; 483(7390): 444-7, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437612

RESUMEN

Transmission electron microscopy is a powerful imaging tool that has found broad application in materials science, nanoscience and biology. With the introduction of aberration-corrected electron lenses, both the spatial resolution and the image quality in transmission electron microscopy have been significantly improved and resolution below 0.5 ångströms has been demonstrated. To reveal the three-dimensional (3D) structure of thin samples, electron tomography is the method of choice, with cubic-nanometre resolution currently achievable. Discrete tomography has recently been used to generate a 3D atomic reconstruction of a silver nanoparticle two to three nanometres in diameter, but this statistical method assumes prior knowledge of the particle's lattice structure and requires that the atoms fit rigidly on that lattice. Here we report the experimental demonstration of a general electron tomography method that achieves atomic-scale resolution without initial assumptions about the sample structure. By combining a novel projection alignment and tomographic reconstruction method with scanning transmission electron microscopy, we have determined the 3D structure of an approximately ten-nanometre gold nanoparticle at 2.4-ångström resolution. Although we cannot definitively locate all of the atoms inside the nanoparticle, individual atoms are observed in some regions of the particle and several grains are identified in three dimensions. The 3D surface morphology and internal lattice structure revealed are consistent with a distorted icosahedral multiply twinned particle. We anticipate that this general method can be applied not only to determine the 3D structure of nanomaterials at atomic-scale resolution, but also to improve the spatial resolution and image quality in other tomography fields.

7.
Microsc Microanal ; 29(Supplement_1): 1608-1609, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613837
11.
Nano Lett ; 15(6): 3983-7, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25927328

RESUMEN

Conductive bridge random access memory (CBRAM) is a leading candidate to supersede flash memory, but poor understanding of its switching process impedes widespread implementation. The underlying physics and basic, unresolved issues such as the connecting filament's growth direction can be revealed with direct imaging, but the nanoscale target region is completely encased and thus difficult to access with real-time, high-resolution probes. In Pt/Al2O3/Cu CBRAM devices with a realistic topology, we find that the filament grows backward toward the source metal electrode. This observation, consistent over many cycles in different devices, corroborates the standard electrochemical metallization model of CBRAM operation. Time-resolved scanning transmission electron microscopy (STEM) reveals distinct nucleation-limited and potential-limited no-growth periods occurring before and after a connection is made, respectively. The subfemtoampere ionic currents visualized move some thousands of atoms during a switch and lag the nanoampere electronic currents.


Asunto(s)
Óxido de Aluminio/química , Cobre/química , Nanoestructuras/química , Platino (Metal)/química
12.
J Am Chem Soc ; 137(1): 118-21, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25525864

RESUMEN

Hydrogen production through the reduction of water has emerged as an important strategy for the storage of renewable energy in chemical bonds. One attractive scenario for the construction of efficient devices for electrochemical splitting of water requires the attachment of stable and active hydrogen evolving catalysts to electrode surfaces, which remains a significant challenge. We demonstrate here the successful integration of cobalt dithiolene catalysts into a metal-organic surface to generate very active electrocatalytic cathode materials for hydrogen generation from water. These surfaces display high catalyst loadings and remarkable stability even under very acidic aqueous solutions.

13.
Nanotechnology ; 26(25): 255702, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26023725

RESUMEN

Engineering silicon into nanostructures has been a well-adopted strategy to improve the cyclic performance of silicon as a lithium-ion battery anode. Here, we show that the electrode performance can be further improved by alloying silicon with germanium. We have evaluated the electrode performance of SixGe1-x nanoparticles (NPs) with different compositions. Experimentally, SixGe1-x NPs with compositions approaching Si50Ge50 are found to have better cyclic retention than both Si-rich and Ge-rich NPs. During the charge/discharge process, NP merging and Si-Ge homogenization are observed. In addition, a distinct morphology difference is observed after 100 cycles, which is believed to be responsible for the different capacity retention behavior. The present study on SixGe1-x alloy NPs sheds light on the development of Si-based electrode materials for stable operation in lithium-ion batteries (e.g., through a comprehensive design of material structure and chemical composition). The investigation of composition-dependent morphology evolution in the delithiated Li-SiGe ternary alloy also significantly broadens our understanding of dealloying in complex systems, and it is complementary to the well-established understanding of dealloying behavior in binary systems (e.g., Au-Ag alloys).

14.
Nano Lett ; 14(6): 3014-22, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24837617

RESUMEN

Semiconducting SnO2 nanowires have been used to demonstrate high-quality field-effect transistors, optically transparent devices, photodetectors, and gas sensors. However, controllable assembly of rutile SnO2 nanowires is necessary for scalable and practical device applications. Here, we demonstrate aligned, planar SnO2 nanowires grown on A-plane, M-plane, and R-plane sapphire substrates. These parallel nanowires can reach 100 µm in length with sufficient density to be patterned photolithographically for field-effect transistors and sensor devices. As proof-of-concept, we show that transistors made this way can achieve on/off current ratios on the order of 10(6), mobilities around 71.68 cm(2)/V·s, and sufficiently high currents to drive external organic light-emitting diode displays. Furthermore, the aligned SnO2 nanowire devices are shown to be photosensitive to UV light with the capability to distinguish between 254 and 365 nm wavelengths. Their alignment is advantageous for polarized UV light detection; we have measured a polarization ratio of photoconductance (σ) of 0.3. Lastly, we show that the nanowires can detect NO2 at a concentration of 0.2 ppb, making them a scalable, ultrasensitive gas sensing technology. Aligned SnO2 nanowires offer a straightforward method to fabricate scalable SnO2 nanodevices for a variety of future electronic applications.


Asunto(s)
Óxido de Aluminio/química , Nanocables/química , Óxido Nítrico/análisis , Semiconductores , Compuestos de Estaño/química , Nanocables/ultraestructura
15.
Nano Lett ; 14(1): 261-8, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24279924

RESUMEN

Recently, silicon-based lithium-ion battery anodes have shown encouraging results, as they can offer high capacities and long cyclic lifetimes. The applications of this technology are largely impeded by the complicated and expensive approaches in producing Si with desired nanostructures. We report a cost-efficient method to produce nanoporous Si particles from metallurgical Si through ball-milling and inexpensive stain-etching. The porosity of porous Si is derived from particle's three-dimensional reconstructions by scanning transmission electron microscopy (STEM) tomography, which shows the particles' highly porous structure when etched under proper conditions. Nanoporous Si anodes with a reversible capacity of 2900 mAh/g was attained at a charging rate of 400 mA/g, and a stable capacity above 1100 mAh/g was retained for extended 600 cycles tested at 2000 mA/g. The synthetic route is low-cost and scalable for mass production, promising Si as a potential anode material for the next-generation lithium-ion batteries with enhanced capacity and energy density.

16.
Inorg Chem ; 53(23): 12396-401, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25385689

RESUMEN

A single-step hydrothermal route to the preparation of the pyroxene mineral, NaFeSi2O6, is reported. The as-prepared samples are found to adopt a nanowire morphology and can be made with a yield of several hundred milligrams at a time with high purity. Synchrotron X-ray diffraction, electron microscopy, and Mössbauer spectroscopy are employed to characterize the structure and morphology. A comparison of the temperature- and field-dependent magnetic properties between the nanowire and sintered phases shows substantial differences that can likely be attributed to the reduced particle size and increased number of spins on the surface of the nanowires.

17.
ACS Macro Lett ; 13(4): 423-428, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38529829

RESUMEN

We report a unique method to construct hierarchical superstructures based on molecular programming of peptidomimetics. Chiral steric hindrance in the polymer backbone stabilizes peptoid helices that crystallize into nanosheets during solvent evaporation. The stacking of nanosheets results in flower-like superstructures. The helical peptoid, nucleated from chiral monomers, is characterized as locally stiffer and more extended than the unstructured peptoid. Molecular dynamics (MD) simulations further suggest a constraint on the dihedral angles and a preference toward the trans configuration, resulting in an extended chain structure. The nanosheet assemblies at various length scales indicate an extent of intermolecular ordering amplified by chiral steric hindrance. Such molecular programming and processing protocols will benefit the future design and controlled assembly of hierarchical peptidomimetics.

18.
Sci Adv ; 9(28): eadg5135, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436993

RESUMEN

The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these "chemical fingerprints" to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.

19.
J Am Chem Soc ; 134(22): 9251-62, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22632379

RESUMEN

Single crystals of doped aniline oligomers are produced via a simple solution-based self-assembly method. Detailed mechanistic studies reveal that crystals of different morphologies and dimensions can be produced by a "bottom-up" hierarchical assembly where structures such as one-dimensional (1-D) nanofibers can be aggregated into higher order architectures. A large variety of crystalline nanostructures including 1-D nanofibers and nanowires, 2-D nanoribbons and nanosheets, 3-D nanoplates, stacked sheets, nanoflowers, porous networks, hollow spheres, and twisted coils can be obtained by controlling the nucleation of the crystals and the non-covalent interactions between the doped oligomers. These nanoscale crystals exhibit enhanced conductivity compared to their bulk counterparts as well as interesting structure-property relationships such as shape-dependent crystallinity. Furthermore, the morphology and dimension of these structures can be largely rationalized and predicted by monitoring molecule-solvent interactions via absorption studies. Using doped tetraaniline as a model system, the results and strategies presented here provide insight into the general scheme of shape and size control for organic materials.

20.
Small ; 8(9): 1415-22, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22351509

RESUMEN

To study the effects of hydrocarbon precursor gases, graphene is grown by chemical vapor deposition from methane, ethane, and propane on copper foils. The larger molecules are found to more readily produce bilayer and multilayer graphene, due to a higher carbon concentration and different decomposition processes. Single- and bilayer graphene can be grown with good selectivity in a simple, single-precursor process by varying the pressure of ethane from 250 to 1000 mTorr. The bilayer graphene is AB-stacked as shown by selected area electron diffraction analysis. Additionally propane is found to only produce a combination of single- to few-layer and turbostratic graphene. The percent coverage is investgated using Raman spectroscopy and optical, scanning electron, and transmission electron microscopies. The data are used to discuss a possible mechanism for the second-layer growth of graphene involving the different cracking pathways of the hydrocarbons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA