Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(17): 12667-12677, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649120

RESUMEN

Volatile organic compounds (VOCs) emitted from forests are important chemical components that affect ecosystem functioning, atmospheric chemistry, and regional climate. Temperature differences between a forest and an adjacent river can induce winds that influence VOC fate and transport. Quantitative observations and scientific understanding, however, remain lacking. Herein, daytime VOC datasets were collected from the surface up to 500 m over the "Rio Negro" river in Amazonia. During time periods of river winds, isoprene, α-pinene, and ß-pinene concentrations increased by 50, 60, and 80% over the river, respectively. The concentrations at 500 m were up to 80% greater compared to those at 100 m because of the transport path of river winds. By comparison, the concentration of methacrolein, a VOC oxidation product, did not depend on river winds or height. The differing observations for primary emissions and oxidation products can be explained by the coupling of timescales among emission, reaction, and transport. This behavior was captured in large-eddy simulations with a coupled chemistry model. The observed and simulated roles of river winds in VOC fate and transport highlight the need for improved representation of these processes in regional models of air quality and chemistry-climate coupling.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Ecosistema , Bosques , Ríos , Viento
2.
Proc Natl Acad Sci U S A ; 116(39): 19318-19323, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501347

RESUMEN

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Asunto(s)
Atmósfera/química , Butadienos/análisis , Bosques , Hemiterpenos/análisis , Compuestos Orgánicos Volátiles/análisis , Brasil , Estaciones del Año , Árboles/clasificación , Árboles/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA