Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 19(1): 234, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611348

RESUMEN

BACKGROUND: Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host's response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. METHODS: C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. RESULTS: Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. CONCLUSION: Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Hemo-Oxigenasa 1/farmacología , Malaria/complicaciones , Proteínas de la Membrana/farmacología , Sustancias Protectoras/farmacología , Trombocitopenia/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Animales , Líquido del Lavado Bronquioalveolar/química , Femenino , Recuento de Leucocitos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Plasmodium berghei/fisiología , Trombocitopenia/etiología
2.
J Immunol ; 193(4): 1864-72, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25015827

RESUMEN

Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1ß, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.


Asunto(s)
Plaquetas/inmunología , Dengue/inmunología , Monocitos/inmunología , Activación Plaquetaria/inmunología , Adulto , Apoptosis/inmunología , Permeabilidad Capilar , Quimiocina CCL2/metabolismo , Virus del Dengue/inmunología , Femenino , Humanos , Inflamación/inmunología , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Masculino , Selectina-P/inmunología , Fagocitosis , Fosfatidilserinas/inmunología , Trombocitopenia/inmunología
3.
J Thromb Haemost ; 19(5): 1319-1330, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587773

RESUMEN

BACKGROUND: Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES: As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS: Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS: The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS: During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.


Asunto(s)
Plaquetas/enzimología , Glucuronidasa/metabolismo , Sepsis , Células Endoteliales , Glucuronidasa/genética , Humanos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA