Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Res Neurobiol ; 4: 100068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36589675

RESUMEN

Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.

2.
Neurochem Res ; 34(5): 884-90, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-18802750

RESUMEN

Protein kinase C (PKC) plays a key role in cellular events including proliferation, survival and differentiation. Our previous study showed the effect of phorbol 12-myristate 13-acetate (PMA), a PKC activator, inducing a decrease in retinal cells proliferation. This effect was mediated by muscarinic type 1 receptors (M1) activation and brain derived neurotrophic factor (BDNF) treatment also induced a decrease in cell proliferation. Based on these results we analyzed the expression of either M1 receptors or BDNF following PMA treatment of retinal cell cultures. Our data demonstrated that PMA induced a decrease in both protein expressions after 48 h in culture. However, after 45 min, PMA induced a transient increase in BDNF expression and a decrease in M1 receptors expression. Analyzing the expression of M1 receptors and BDNF during the postnatal development in vivo, we observed a decrease in both proteins. Taken together our results suggest the involvement of PKC in the control of M1 expression in retinal cells.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Proteína Quinasa C/fisiología , Receptor Muscarínico M1/biosíntesis , Retina/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Ratas , Retina/citología , Retina/crecimiento & desarrollo , Acetato de Tetradecanoilforbol/farmacología
3.
Neurochem Int ; 42(1): 73-80, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12441170

RESUMEN

Protein kinase C (PKC) is involved in several cell events including proliferation, survival and differentiation. The aim of this work was to investigate the role of PKC activation on retinal cells proliferation. We demonstrated that PKC activation by phorbol 12-myristate 13-acetate (PMA), a tumor promoter phorbol ester, is able to decrease retinal cells proliferation. This effect was mediated by M1 receptors and dependent on intracellular Ca(2+) increase, tyrosine kinase activity, phosphatidylinositol 3-kinase activity, polypeptide secretion and activation of TrkB receptors. The effect of PMA was not via activation of mitogen-activated protein (MAP) kinase. Carbamylcholine and brain derived neurotrophic factor were both able to decrease retinal cells proliferation to the same level as PMA did. Our results suggest that PKC activation leads to a decrease in retinal cells proliferation through the release of acetylcholine and brain derived neurotrophic factor in the culture, and activation of M1 and TrkB receptors, respectively.


Asunto(s)
Acetilcolina/fisiología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Carbacol/farmacología , Proteínas del Ojo/metabolismo , Inhibidores de Crecimiento/farmacología , Pirenzepina/análogos & derivados , Proteína Quinasa C/metabolismo , Receptores Muscarínicos/efectos de los fármacos , Retina/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Alcaloides , Células Amacrinas/efectos de los fármacos , Animales , Atropina/farmacología , Benzofenantridinas , Calcio/farmacología , División Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas del Ojo/efectos de los fármacos , Isoenzimas/efectos de los fármacos , Isoenzimas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Oxotremorina/farmacología , Fenantridinas/farmacología , Pirenzepina/farmacología , Proteína Quinasa C/efectos de los fármacos , Ratas , Receptor Muscarínico M1 , Receptores Muscarínicos/fisiología , Retina/citología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA