Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Sci Technol ; 51(5): 2992-3000, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28191957

RESUMEN

Although a promising technique, phytoextraction has yet to see significant commercialization. Major limitations include metal uptake rates and subsequent processing costs. However, it has been shown that liquid-culture-grown Arabidopsis can take up and store palladium as nanoparticles. The processed plant biomass has catalytic activity comparable to that of commercially available catalysts, creating a product of higher value than extracted bulk metal. We demonstrate that the minimum level of palladium in Arabidopsis dried tissues for catalytic activity comparable to commercially available 3% palladium-on-carbon catalysts was achieved from dried plant biomass containing between 12 and 18 g·kg-1 Pd. To advance this technology, species suitable for in-the-field application: mustard, miscanthus, and 16 willow species and cultivars, were tested. These species were able to grow, and take up, palladium from both synthetic and mine-sourced tailings. Although levels of palladium accumulation in field-suitable species are below that required for commercially available 3% palladium-on-carbon catalysts, this study both sets the target, and is a step toward, the development of field-suitable species that concentrate catalytically active levels of palladium. Life cycle assessment on the phytomining approaches described here indicates that the use of plants to accumulate palladium for industrial applications has the potential to decrease the overall environmental impacts associated with extracting palladium using present-day mining processes.


Asunto(s)
Minería , Paladio , Arabidopsis , Catálisis , Planta de la Mostaza , Contaminantes del Suelo
2.
Environ Sci Technol ; 49(8): 4773-80, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25700109

RESUMEN

Phytomining technology employs hyperaccumulator plants to take up metal in harvestable plant biomass. Harvesting, drying and incineration of the biomass generates a high-grade bio-ore. We propose that "agromining" (a variant of phytomining) could provide local communities with an alternative type of agriculture on degraded lands; farming not for food crops, but for metals such as nickel (Ni). However, two decades after its inception and numerous successful experiments, commercial phytomining has not yet become a reality. To build the case for the minerals industry, a large-scale demonstration is needed to identify operational risks and provide "real-life" evidence for profitability.


Asunto(s)
Agricultura/métodos , Metales/metabolismo , Minería/métodos , Minería/tendencias , Contaminantes del Suelo/análisis , Agricultura/economía , Agricultura/tendencias , Metales/análisis , Metales/aislamiento & purificación , Minería/economía , Minería/instrumentación , Níquel/análisis , Níquel/metabolismo
3.
New Phytol ; 166(2): 445-54, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15819909

RESUMEN

The induced accumulation of mercury (Hg) by plants was investigated for the species Phaseolus vulgaris (Bush bean), Brassica juncea (Indian mustard), and Vicia villosa (Hairy vetch). All plants were grown in modified Hg-contaminated mine tailings and were treated with sulphur-containing ligands to induce Hg accumulation. The effects of varied substrate Hg concentration and humic acid (HA) level on the induced plant-Hg accumulation for B. juncea were examined. Thiosulphate salts (ammonium and sodium) mobilised Hg in the substrates and caused an increase in the Hg concentration of roots and shoots of all tested plant species. Root Hg accumulation was positively correlated to extractable Hg for (NH4)2S2O3-treated B. juncea plants grown in HA-amended substrates. However, shoot Hg translocation for this species was inhibited at 1.25 g HA kg(-1) of substrate. Mercury-thiosulphate complexes could be translocated and accumulated in the upper parts of the plants up to 25 times the Hg concentration in the substrate. We conclude that shoot Hg accumulation in the presence of thiosulphate salts is dependent upon plant species characteristics (e.g. root surface area) and humic acid content.


Asunto(s)
Sustancias Húmicas , Mercurio/metabolismo , Planta de la Mostaza/metabolismo , Phaseolus/metabolismo , Azufre/fisiología , Vicia/metabolismo , Transporte Biológico Activo , Ligandos , Mercurio/química , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo , Azufre/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA