Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(1): 526-536, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38109558

RESUMEN

Solution combustion-synthesized Ruddlesden-Popper oxides La1.4Sr0.6Ni0.9(Mn/Fe/Co)0.1O4+δ were explored for the methanol electro-oxidation reaction. With optimal doping of Sr2+ in the A site and Co2+ in the B site, Ni3+ with t2g6 dx2-y21 configuration in La1.4Sr0.6Ni0.9Co0.1O4+δ exhibited a tetragonal distortion with compression in axial bonds and elongation in equatorial bonds. This structural modification fostered an augmented overlap of dz2 orbitals with axial O 2p orbitals, leading to a heightened density of states at the Fermi level. Consequently, this facilitated not only elevated electrical conductivity but also a noteworthy reduction in the charge transfer resistance. These effects collectively contributed to the exceptional methanol oxidation activity of La1.4Sr0.6Ni0.9Co0.1O4+δ, as evidenced by an impressive current density of 21.4 mA cm-2 and retention of 95% of initial current density even after 10 h of prolonged reaction. The presence of Ni3+ further played a pivotal role in the creation of NiOOH, a crucial intermediate species, facilitated by the presence of surface oxygen vacancies. These factors synergistically enabled efficient methanol oxidation. In summary, our present study not only yields substantial insights but also paves the way for a novel avenue to fine-tune the activity of Ruddlesden-Popper oxides for the successful electro-oxidation of methanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA