Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163946

RESUMEN

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38600781

RESUMEN

The pyroligneous acid (PA), or wood vinegar, is a byproduct of wood carbonization during the slow pyrolysis process. PA is recognized globally as a safe compound for agriculture due to its various beneficial properties, such as antioxidant, antibacterial, antifungal, and termiticidal properties. However, the impact of different PA concentrations on beneficial soil organisms, such as earthworms has not been investigated. The present study aims to understand the effects of different PA concentrations on earthworm Eisenia fetida. The earthworms were exposed to nine different concentrations of PA in soils, including their control. The acute toxicity assay was performed after 14 days of exposure, and the chronic toxicity assay was performed up to 8 weeks after exposure. The results from the acute toxicity assay demonstrated no significant effect on earthworm mortality. The chronic toxicity assay showed that lower PA concentrations (0.01-0.2% of weight/weight PA in soil) promoted cocoon and juvenile production in soils, whereas higher PA concentrations (0.5 and 1%) had a negative effect. These findings highlight the potential of PA to enhance soil fertility at lower concentrations, up to 0.2%, by stimulating worm activity and subsequent manure production. The outcomes of this study have significant implications for the careful management of PA concentrations within agricultural operations.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Terpenos , Animales , Contaminantes del Suelo/análisis , Fertilidad , Suelo
3.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483701

RESUMEN

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Humanos , Adolescente , Suelo , Herbicidas/toxicidad , Herbicidas/análisis , Arcilla , Granjas , Contaminantes del Suelo/análisis , Adsorción , Salud Ambiental , Óxidos
4.
J Environ Sci (China) ; 144: 137-147, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38802225

RESUMEN

The pollution and ecological risks posed by arsenic (As) entering the soil are the major environmental challenges faced by human beings. Soil phosphatase can serve as a useful indicator for assessing As contamination under specific soil pH conditions. However, the study of phosphatase kinetics in long-term field As-contaminated soil remains unclear, presenting a significant obstacle to the monitoring and evaluation of As pollution and toxicity. The purpose of this study was to determine phosphatase activity and explore enzyme kinetics in soils subjected to long-term field As contamination. Results revealed that the soil phosphatase activity varied among the tested soil samples, depending on the concentrations of As. The relationship between total As, As fractions and phosphatase activity was found to be significant through negative exponential function fitting. Kinetic parameters, including maximum reaction velocity (Vmax), Michaelis constant (Km) and catalytic efficiency (Vmax/Km), ranged from 3.14 × 10-2-53.88 × 10-2 mmol/(L·hr), 0.61-7.92 mmol/L, and 0.46 × 10-2-11.20 × 10-2 hr-1, respectively. Vmax and Vmax/Km of phosphatase decreased with increasing As pollution, while Km was less affected. Interestingly, Vmax/Km showed a significant negative correlation with all As fractions and total As. The ecological doses (ED10) for the complete inhibition and partial inhibition models ranged from 0.22-70.33 mg/kg and 0.001-55.27 mg/kg, respectively, indicating that Vmax/Km can be used as an index for assessing As pollution in field-contaminated soil. This study demonstrated that the phosphatase kinetics parameters in the soil's pH system were better indicators than the optimal pH for evaluating the field ecotoxicity of As.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Arsénico/análisis , Suelo/química , Concentración de Iones de Hidrógeno , Monitoreo del Ambiente/métodos , Cinética , Monoéster Fosfórico Hidrolasas/metabolismo
5.
Environ Microbiol ; 25(12): 3387-3405, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37915109

RESUMEN

In this study, we compared the genomes of three metal-resistant bacteria isolated from mercury-contaminated soil. We identified diverse and novel MGEs with evidence of multiple LGT events shaping their genomic structure and heavy metal resistance. Among the three metal-resistant strains, Sphingobium sp SA2 and Sphingopyxis sp SE2 were resistant to multiple metals including mercury, cadmium, copper, zinc and lead. Pseudoxanthomonas sp SE1 showed resistance to mercury only. Whole genome sequencing by Illumina and Oxford Nanopore technologies was undertaken to obtain comprehensive genomic data. The Sphingobium and Sphingopyxis strains contained multiple chromosomes and plasmids, whereas the Pseudoxanthomonas strain contained one circular chromosome. Consistent with their metal resistance profiles, the strains of Sphingobium and Sphingopyxis contained a higher quantity of diverse metal resistance genes across their chromosomes and plasmids compared to the single-metal resistant Pseudoxanthomonas SE1. In all three strains, metal resistance genes were principally associated with various novel MGEs including genomic islands (GIs), integrative conjugative elements (ICEs), transposons, insertion sequences (IS), recombinase in trio (RIT) elements and group II introns, indicating their importance in facilitating metal resistance adaptation in a contaminated environment. In the Pseudoxanthomonas strain, metal resistance regions were largely situated on a GI. The chromosomes of the strains of Sphingobium and Sphingopyxis contained multiple metal resistance regions, which were likely acquired by several GIs, ICEs, numerous IS elements, several Tn3 family transposons and RIT elements. Two of the plasmids of Sphingobium were impacted by Tn3 family transposons and ISs likely integrating metal resistance genes. The two plasmids of Sphingopyxis harboured transposons, IS elements, an RIT element and a group II intron. This study provides a comprehensive annotation of complex genomic regions of metal resistance associated with novel MGEs. It highlights the critical importance of LGT in the evolution of metal resistance of bacteria in contaminated environments.


Asunto(s)
Elementos Transponibles de ADN , Mercurio , Elementos Transponibles de ADN/genética , Genoma Bacteriano/genética , Plásmidos/genética , Islas Genómicas , Bacterias/genética
6.
Microb Ecol ; 86(1): 271-281, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35610382

RESUMEN

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil. Bacterial community composition analysis revealed that a naphthalene-degrading enrichment culture, MMNap, was dominated (84.90%) by a Gram-positive endospore-forming member of the genus Desulfotomaculum with minor contribution (8.60%) from a member of Clostridium. The pyrene-degrading enrichment, MMPyr, was dominated (97.40%) by a species of Desulfotomaculum. The sequences representing the Desulfotomaculum phylotypes shared 98.80% similarity to each other. After 150 days of incubation, MMNap degraded 195 µM naphthalene with simultaneous reduction of sulfate and accumulation of sulfide. Similarly, MMPyr degraded 114 µM pyrene during 180 days of incubation with nearly stochiometric sulfate consumption and sulfide accumulation. In both cases, the addition of sulfate reduction inhibitor, molybdate (20 mM), resulted in complete cessation of the substrate utilization and sulfate reduction that clearly indicated the major role of the sulfate-reducing Desulfotomaculum in biodegradation of the two PAHs. This study is the first report on anaerobic pyrene degradation by a matrix-free, strictly anaerobic, and sulfate-reducing enrichment culture.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Sulfatos , Anaerobiosis , Sulfatos/metabolismo , Naftalenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pirenos , Biodegradación Ambiental
7.
Environ Res ; 235: 116616, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437866

RESUMEN

Our current understanding of the susceptibility of hazardous polycyclic aromatic hydrocarbons (PAHs) to anaerobic microbial degradation is very limited. In the present study, we obtained phenanthrene- and pyrene-degrading strictly anaerobic sulfate-reducing enrichments using contaminated freshwater lake sediments as the source material. The highly enriched phenanthrene-degrading culture, MMKS23, was dominated (98%) by a sulfate-reducing bacterium belonging to the genus Desulfovibrio. While Desulfovibrio sp. was also predominant (79%) in the pyrene-degrading enrichment culture, MMKS44, an anoxygenic purple non-sulfur bacterium, Rhodopseudomonas sp., constituted a significant fraction (18%) of the total microbial community. Phenanthrene or pyrene biodegradation by the enrichment cultures was coupled with sulfate reduction, as evident from near stoichiometric consumption of sulfate and accumulation of sulfide. Also, there was almost complete inhibition of substrate degradation in the presence of an inhibitor of sulfate reduction, i.e., 20 mM MoO42-, in the culture medium. After 180 days of incubation, about 79.40 µM phenanthrene was degraded in the MMKS23 culture, resulting in the consumption of 806.80 µM sulfate and accumulation of 625.80 µM sulfide. Anaerobic pyrene biodegradation by the MMKS44 culture was relatively slow. About 22.30 µM of the substrate was degraded after 180 days resulting in the depletion of 239 µM sulfate and accumulation of 196.90 µM sulfide. Biodegradation of phenanthrene by the enrichment yielded a metabolite, phenanthrene-2-carboxylic acid, suggesting that carboxylation could be a widespread initial step of phenanthrene activation under sulfate-reducing conditions. Overall, this novel study demonstrates the ability of sulfate-reducing bacteria (SRB), dwelling in contaminated freshwater sediments to anaerobically biodegrade three-ringed phenanthrene and highly recalcitrant four-ringed pyrene. Our findings suggest that SRB could play a crucial role in the natural attenuation of PAHs in anoxic freshwater sediments.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Anaerobiosis , Lagos , Sulfatos , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pirenos , Bacterias/metabolismo , Biodegradación Ambiental , Sedimentos Geológicos
8.
Curr Microbiol ; 80(12): 397, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907801

RESUMEN

The release of organic and inorganic contaminants into soil from industry, agriculture, and urbanization has become a major issue of international concern, particularly the heavy metals such as aluminum (Al) and the chemical phenanthrene (PHE). Due to their potential toxicity and non-biodegrade in the environment, efficient remediation methods are urgently needed. Recently, research has comprehensively discussed using plants and their endophytes in bioremediation efforts. Endophytic Bacillus sp. R1, isolated from Brassica napus permanently contaminated with Al and PHE, has growth-promoting properties and can efficiently detoxify these contaminants. The pot experiment indicated that compared to the Al combined PHE contaminated soil alone treatment, the R1 treatment led to increased Al accumulation in canola roots across different levels of PHE, Al, and combined PHE and Al contamination. However, Al accumulation in canola shoots and seeds remained unchanged for all treatments. Moreover, PHE in canola roots and shoots was decreased by R1 inoculation and thereby reducing 26.12-60.61% PHE translocated into canola seeds. Additionally, R1 inoculation significantly increased the proportion of extractable Al and, decreased the proportion of acid-soluble inorganic Al and humic-acid Al, but did not affect the concentration of organically complexed Al. In summary, endophyte R1 can degrade PHE, improve canola roots' Al uptake by increasing soil available Al, and scavenge the reactive oxygen species through production of antioxidant enzymes to help alleviate the toxicity of canola co-contaminated with aluminum and phenanthrene.


Asunto(s)
Bacillus , Brassica napus , Fenantrenos , Contaminantes del Suelo , Bacillus/metabolismo , Biodegradación Ambiental , Aluminio/toxicidad , Aluminio/metabolismo , Fenantrenos/toxicidad , Fenantrenos/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo
9.
J Environ Manage ; 325(Pt A): 116425, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240642

RESUMEN

A methylotrophic enrichment culture, MM34X, has been assessed for its exceptional ability in biodegradation of dimethylformamide (DMF) and bioremediation of laboratory wastewater (LWW) co-contaminated with polycyclic aromatic hydrocarbons (PAHs). The culture MM34X tolerated high concentrations of DMF and efficiently degraded 98% of 20,000 mg L-1 DMF within 120 h. LWW bioremediation was performed in stirred bottle laboratory-scale bioreactor. After 35 days of incubation, 2760.8 ± 21.1 mg L-1 DMF, 131.8 ± 9.7 mg L-1 phenanthrene, 177.3 ± 7.5 mg L-1 pyrene and 39.5 ± 2.7 mg L-1 BaP in LWW were removed. Analysis of post-bioremediation residues indicated the absence of any known toxic intermediates. The efficacy of bioremediation was further evaluated through cyto-genotoxicity assays using Allium cepa. The roots of A. cepa exposed to bioremediated LWW showed improved mitotic index, whereas original LWW completely arrested cell growth. Similarly, the alkaline comet assay indicated alleviation of genotoxicity in bioremediated LWW, as evidenced by significantly lower DNA damage in terms of tail DNA and Olive tail moment. In addition, oxidative stress assays, performed using fluorescent probes 2',7'-dichlorodihydrofluorescein diacetate, C11-BODIPY and dihydrorhodamine 123, revealed significant mitigation of oxidative stress potential in bioremediated LWW. Our findings suggest that the enrichment MM34X may prime the development of inexpensive and efficient large-scale bioremediation of LWW co-contaminated with PAHs and DMF.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/química , Aguas Residuales , Dimetilformamida , Contaminantes del Suelo/química
10.
J Environ Manage ; 348: 119364, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37866190

RESUMEN

A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/química , Ecosistema , Ambiente , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
11.
Environ Geochem Health ; 45(5): 1599-1614, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35538333

RESUMEN

Pesticides are the most cost-effective means of pest control; however, the serious concern is about the non-target effects due to their extensive and intensive use in both agricultural and non-agricultural settings. The degradation rate constant (k) and half-life (DT50) of four commonly used pesticides, glyphosate, 2,4-D, chlorothalonil and dimethoate were determined in five Australian urban landscape soils, with varying physicochemical characteristics, to assess their environmental and human health risks. The k values (day-1) for the selected pesticides were inversely proportional to those of organic carbon (OC), silt, clay and Fe and Al oxides, and directly proportional to pH and sand content in soils. In contrast, the calculated values of DT50 (days) of all the four pesticides in five soils positively correlated with OC, clay, silt and oxides of Fe and Al, whereas soil pH and sand content exhibited a negative correlation. The calculated values of environmental indices, GUS and LIX, for the selected pesticides indicate their potential portability into water bodies, affecting non-target organisms as well as food safety. The evaluation for human non-cancer risk of these pesticides, based on the calculated values of hazard quotient (HQ) and hazard index (HI), suggested that exposure of adults and children to soils, contaminated with 50% of initially applied concentrations, through ingestion, dermal and inhalation pathways might cause negligible to zero non-carcinogenic risks. The present data might help the stakeholders in applying recommended doses of pesticides in urban landscapes and regulatory bodies concerned in monitoring the overall environmental quality and implementing safeguard policies. Our study also clearly demonstrates the need for developing improved formulations and spraying technologies for pesticides to minimize human and environmental health risks.


Asunto(s)
Plaguicidas , Contaminantes del Suelo , Adulto , Niño , Humanos , Plaguicidas/toxicidad , Plaguicidas/análisis , Suelo/química , Arcilla , Arena , Contaminantes del Suelo/análisis , Australia , Medición de Riesgo , Monitoreo del Ambiente
12.
World J Microbiol Biotechnol ; 39(10): 283, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594588

RESUMEN

The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.


Asunto(s)
Arsénico , Contaminantes Ambientales , Biodegradación Ambiental , Biomasa , Proteobacteria
13.
World J Microbiol Biotechnol ; 39(7): 173, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115249

RESUMEN

Deteriorating the quality of different parts of the ecosystem due to toxic metals is a serious global issue. Hexavalent chromium is a metal that can cause adverse effects on all living beings, including plants, animals, and microorganisms, on exposure to high concentrations for prolonged periods. Removing hexavalent chromium from various types of wastes is challenging; hence the present study investigated the use of bacteria incorporated with selected natural substrates in removing hexavalent chromium from water. Isolated Staphylococcus edaphicus KCB02A11 has shown higher removal efficiency with a wide hexavalent chromium range (0.025-8.5 mg/L) within 96 h. Incorporating the isolated strain with natural substrates commonly found in the environment (hay and wood husk) showed high removal potential [100% removal with 8.5 mg/L of Cr(VI)], even within less than 72 h, with the formation of biofilms on the used substrates applied for metal removal on a large scale for prolonged periods. This study is the first report investigating hexavalent chromium tolerance and removal by Staphylococcus edaphicus KCB02A11.


Asunto(s)
Ecosistema , Contaminantes Químicos del Agua , Cromo/toxicidad , Staphylococcus , Contaminantes Químicos del Agua/análisis , Adsorción
14.
Bull Environ Contam Toxicol ; 110(4): 73, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000234

RESUMEN

While analytical measurements provide the quantitative estimation of the total amount of metals present in a sample, they do not reflect the truly bioavailable fraction of metal which reflects the adverse biological effect. Hence the development of monitoring tools for detecting bioavailable toxic metals has become a priority in environmental monitoring activities. An optical whole-cell biosensor was constructed using the microalga Scenedesmus subspicatus MM1 immobilizing in inorganic silica hydrogels using the sol-gel technique to detect bioavailable Cadmium (Cd2+), Copper (Cu2+) and Zinc (Zn+) in freshwater. Conditions for optimum biosensor performance have been established regarding effective pH range, cell density, exposure time, and storage stability. The optimum response for the biosensor was dependent on the pH of the matrix, cell concentration and exposure time were derived. The biosensor was operational for four weeks. The limit of detection for the algal biosensor was determined as 9.0 × 10-1, 9.1 × 10-1, and 8.8 × 10-1 mg/L for Cd, Cu and Zn, respectively. Whole-cell cell biosensor will be highly useful since it comprises a single microalgal species able to detect the bioavailable content of Cd2+, Cu2+, and Zn2+ in freshwater.


Asunto(s)
Técnicas Biosensibles , Metales Pesados , Microalgas , Metales Pesados/análisis , Cadmio/análisis , Disponibilidad Biológica , Cobre/análisis , Zinc/toxicidad , Agua Dulce , Monitoreo del Ambiente/métodos
15.
Microb Ecol ; 83(4): 951-959, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34363515

RESUMEN

Mutual interactions in co-cultures of microalgae and bacteria are well known for establishing consortia and nutrient uptake in aquatic habitats, but the phenotypic changes in terms of morphological, physiological, and biochemical attributes that drive these interactions have not been clearly understood. In this novel study, we demonstrated the phenotypic response in a co-culture involving a microalga, Tetradesmus obliquus IS2, and a bacterium, Variovorax paradoxus IS1, grown with varying concentrations of two inorganic nitrogen sources. Modified Bold's basal medium was supplemented with five ratios (%) of NO3-N:NH4-N (100:0, 75:25, 50:50, 25:75, and 0:100), and by maintaining N:P Redfield ratio of 16:1. The observed morphological changes in microalga included an increase in granularity and a broad range of cell sizes under the influence of increased ammonium levels. Co-culturing in presence of NO3-N alone or combination with NH4-N up to equimolar concentrations resulted in complete nitrogen uptake, increased growth in both the microbial strains, and enhanced accumulation of carbohydrates, proteins, and lipids. Total chlorophyll content in microalga was also significantly higher when it was grown as a co-culture with NO3-N and NH4-N up to a ratio of 50:50. Significant upregulation in the synthesis of amino acids and sugars and downregulation of organic acids were evident with higher ammonium uptake in the co-culture, indicating the regulation of carbon and nitrogen assimilation pathways and energy synthesis. Our data suggest that the co-culture of strains IS1 and IS2 could be exploited for effluent treatment by considering the concentrations of inorganic sources, particularly ammonium, in the wastewaters.


Asunto(s)
Compuestos de Amonio , Compuestos de Amonio/metabolismo , Técnicas de Cocultivo , Comamonadaceae , Nitratos/metabolismo , Nitrógeno/metabolismo
16.
Microb Ecol ; 83(3): 596-607, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34132846

RESUMEN

The importance of several factors that drive the symbiotic interactions between bacteria and microalgae in consortia has been well realised. However, the implication of extracellular polymeric substances (EPS) released by the partners remains unclear. Therefore, the present study focused on the influence of EPS in developing consortia of a bacterium, Variovorax paradoxus IS1, with a microalga, Tetradesmus obliquus IS2 or Coelastrella sp. IS3, all isolated from poultry slaughterhouse wastewater. The bacterium increased the specific growth rates of microalgal species significantly in the consortia by enhancing the uptake of nitrate (88‒99%) and phosphate (92‒95%) besides accumulating higher amounts of carbohydrates and proteins. The EPS obtained from exudates, collected from the bacterial or microalgal cultures, contained numerous phytohormones, vitamins, polysaccharides and amino acids that are likely involved in interspecies interactions. The addition of EPS obtained from V. paradoxus IS1 to the culture medium doubled the growth of both the microalgal strains. The EPS collected from T. obliquus IS2 significantly increased the growth of V. paradoxus IS1, but there was no apparent change in bacterial growth when it was cultured in the presence of EPS from Coelastrella sp. IS3. These observations indicate that the interaction between V. paradoxus IS1 and T. obliquus IS2 was mutualism, while commensalism was the interaction between the bacterial strain and Coelastrella sp. IS3. Our present findings thus, for the first time, unveil the EPS-induced symbiotic interactions among the partners involved in bacterial‒microalgal consortia.


Asunto(s)
Microalgas , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Simbiosis , Aguas Residuales/microbiología
17.
Biodegradation ; 33(6): 575-591, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35976498

RESUMEN

Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.


Asunto(s)
Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Benzo(a)pireno/metabolismo , Dimetilformamida/metabolismo , Suelo , Pirenos/metabolismo , Fenantrenos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Solventes/metabolismo
18.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164279

RESUMEN

Sustainability evaluation of wastewater treatment helps to reduce greenhouse gas emissions, as it emphasizes the development of green technologies and optimum resource use rather than the end-of-pipe treatment. The conventional approaches for treating acid mine drainages (AMDs) are efficient; however, they need enormous amounts of energy, making them less sustainable and causing greater environmental concern. We recently demonstrated the potential of immobilized acid-adapted microalgal technology for AMD remediation. Here, this novel approach has been evaluated following emergy and carbon footprint analysis for its sustainability in AMD treatment. Our results showed that imported energy inputs contributed significantly (>90%) to the overall emergy and were much lower than in passive and active treatment systems. The microalgal treatment required 2-15 times more renewable inputs than the other two treatment systems. Additionally, the emergy indices indicated higher environmental loading ratio and lower per cent renewability, suggesting the need for adequate renewable inputs in the immobilized microalgal system. The emergy yield ratio for biodiesel production from the microalgal biomass after AMD treatment was >1.0, which indicates a better emergy return on total emergy spent. Based on greenhouse gas emissions, carbon footprint analysis (CFA), was performed using default emission factors, in accordance with the IPCC standards and the National Greenhouse Energy Reporting (NGER) program of Australia. Interestingly, CFA of acid-adapted microalgal technology revealed significant greenhouse gas emissions due to usage of various construction materials as per IPCC, while SCOPE 2 emissions from purchased electricity were evident as per NGER. Our findings indicate that the immobilized microalgal technology is highly sustainable in AMD treatment, and its potential could be realized further by including solar energy into the overall treatment system.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36093751

RESUMEN

Pyroligneous acid (PA) is a highly oxygenated organic condensate obtained by cooling the gases generated from the pyrolysis process. PA has been used in agriculture for several years with multiple beneficial effects, including plant health and yields, pest resilience, and seed germination. It is generally applied to agricultural soils in the dilution of 1:1000 to 1:100, corresponding to 0.1-1% PA concentration. In this study, the cyto-genotoxic potential of PA to Allium cepa meristematic root-tips (where all cells undergo repeated division and form primary root tissues) was examined. Exposure to PA concentrations of 0.1% and above showed a reduction in the mitotic index percentage, and at 5%, a complete arrest in the cell division was recorded. However, chromosomal aberrations at 0.5, 1, and 3% PA were reversible types such as bridges, vagrants, laggards, and multipolar anaphase, with a maximum of only 5.8% chromosomal aberration observed at 3% PA. Comet assay (single-cell gel electrophoresis) for genotoxicity assessment determined using PA exposed A. cepa root tips showed that it was not genotoxic. The absence of cyto-genotoxicity in A. cepa, even at concentrations far above what would be typically encountered in agricultural applications, strongly suggests that PA is unlikely to cause adverse effects on crops and ultimately on the biota and human health.


Asunto(s)
Cebollas , Raíces de Plantas , Humanos , Cebollas/genética , Daño del ADN , Aberraciones Cromosómicas/inducido químicamente , Suelo , Gases
20.
Artículo en Inglés | MEDLINE | ID: mdl-36026594

RESUMEN

Remediation of hexavalent chromium with conventional chemical and physical methods is a costly process, while replacing some critical steps in physiochemical remediation with self-sustaining bioremediation agents are expected to be cost-effective and environmentally friendly implementation. In this study, a microalga isolated from a freshwater stream receiving treated textile wastewater was identified up to its molecular level and investigated its ability to tolerate and remove hexavalent chromium from extremely acidic conditions under different temperatures. The ability of microalgae to tolerate and remove Cr(VI) was investigated by growing it in BG11 media with different pH (1, 2, 3 & 7), amended with several concentrations of Cr(VI) and incubated under different temperatures for 96 hrs. Microalga was identified as Chlorella vulgaris and found that the isolated strain has a higher hexavalent chromium removal potential in extremely acidic conditions than in neutral pH conditions at 25 °C. In contrast, its Cr(VI) removal potential is significantly influenced by the pH and temperature of the growth medium. Furthermore, it exhibited a permanent viability loss at extreme acidic conditions (pH 1 - 3) and prolonged exposure to the higher chromium content. The microalga investigated will be a highly useful bioagent in hexavalent chromium remediation in high acidic conditions.


Asunto(s)
Chlorella vulgaris , Biodegradación Ambiental , Cromo/análisis , Agua Dulce , Ríos , Textiles , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA