Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurochem Res ; 49(6): 1556-1576, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38160216

RESUMEN

Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.


Asunto(s)
Proteínas Hedgehog , Esclerosis Múltiple , Neurogénesis , Ratas Wistar , Animales , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Neurogénesis/efectos de los fármacos , Masculino , Proteínas Hedgehog/metabolismo , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptor Smoothened/metabolismo , Modelos Animales de Enfermedad , Proteína con Dedos de Zinc GLI1/metabolismo , Conducta Animal/efectos de los fármacos , Etidio , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico
2.
Biogerontology ; 24(4): 493-531, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37097427

RESUMEN

Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.


Asunto(s)
Proteínas Hedgehog , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Transducción de Señal/fisiología
3.
J Biochem Mol Toxicol ; 37(5): e23330, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36890713

RESUMEN

Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-ß/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-ß pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.


Asunto(s)
Alcaloides , Diabetes Mellitus , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta
4.
Metab Brain Dis ; 38(5): 1471-1499, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37103719

RESUMEN

Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.


Asunto(s)
Alcaloides , Fármacos Neuroprotectores , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Matrinas , Transducción de Señal , Encéfalo
5.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175181

RESUMEN

Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.


Asunto(s)
COVID-19 , Lythraceae , Granada (Fruta) , Humanos , Polifenoles/farmacología , Taninos Hidrolizables/farmacología , Ácido Elágico/farmacología , Extractos Vegetales/farmacología , SARS-CoV-2
6.
Cell Mol Neurobiol ; 42(4): 931-953, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33206287

RESUMEN

Autism is a multifactorial neurodevelopmental condition; it demonstrates some main characteristics, such as impaired social relationships and increased repetitive behavior. The initiation of autism spectrum disorder is mostly triggered during brain development by the deregulation of signaling pathways. Sonic hedgehog (SHH) signaling is one such mechanism that influences neurogenesis and neural processes during the development of the central nervous system. SMO-SHH signaling is also an important part of a broad variety of neurological processes, including neuronal cell differentiation, proliferation, and survival. Dysregulation of SMO-SHH signaling leads to many physiological changes that lead to neurological disorders such as ASD and contribute to cognitive decline. The aberrant downregulation of SMO-SHH signals contributes to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which increases oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis by suppressing target gene expression. We outlined in this review that SMO-SHH deregulation plays a crucial role in the pathogenesis of autism and addresses the current status of SMO-SHH pathway modulators. Additionally, a greater understanding of the SHH signaling pathway is an effort to improve successful treatment for autism and other neurological disorders.


Asunto(s)
Trastorno del Espectro Autista , Proteínas Hedgehog , Trastorno del Espectro Autista/tratamiento farmacológico , Objetivos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Neurogénesis , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
7.
Metab Brain Dis ; 37(6): 1909-1929, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35687217

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder marked by social and communication deficits as well as repetitive behaviour. Several studies have found that overactivation of the PI3K/AKT/mTOR signalling pathways during brain development plays a significant role in autism pathogenesis. Overexpression of the PI3K/AKT/mTOR signalling pathway causes neurological disorders by increasing cell death, neuroinflammation, and oxidative stress. Chrysophanol, also known as chrysophanic acid, is a naturally occurring chemical obtained from the plant Rheum palmatum. This study aimed to examine the neuroprotective effect of CPH on neurobehavioral, molecular, neurochemical, and gross pathological alterations in ICV-PPA induced experimental model of autism in adult rats. The effects of ICV-PPA on PI3K/AKT/mTOR downregulation in the brain were studied in autism-like rats. Furthermore, we investigated how CPH affected myelin basic protein (MBP) levels in rat brain homogenate and apoptotic biomarkers such as caspase-3, Bax, and Bcl-2 levels in rat brain homogenate and blood plasma samples. Rats were tested for behavioural abnormalities such as neuromuscular dysfunction using an actophotometer, motor coordination using a beam crossing task (BCT), depressive behaviour using a forced swim test (FST), cognitive deficiency, and memory consolidation using a Morris water maze (MWM) task. In PPA-treated rats, prolonged oral CPH administration from day 12 to day 44 of the experimental schedule reduces autistic-like symptoms. Furthermore, in rat brain homogenates, blood plasma, and CSF samples, cellular, molecular, and cell death markers, neuroinflammatory cytokines, neurotransmitter levels, and oxidative stress indicators were investigated. The recent findings imply that CPH also restores abnormal neurochemical levels and may prevent autism-like gross pathological alterations, such as demyelination volume, in the rat brain.


Asunto(s)
Antraquinonas , Trastorno del Espectro Autista , Trastorno Autístico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Animales , Antraquinonas/farmacología , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno Autístico/inducido químicamente , Trastorno Autístico/tratamiento farmacológico , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasas/metabolismo , Propionatos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
8.
Molecules ; 27(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35164154

RESUMEN

Autism spectrum disorder is a neurodevelopmental disorder marked by repetitive behaviour, challenges in verbal and non-verbal communication, poor socio-emotional health, and cognitive impairment. An increased level of signal transducer and activator of transcription 3 (STAT3) and a decreased level of peroxisome proliferator-activated receptor (PPAR) gamma have been linked to autism pathogenesis. Guggulsterone (GST) has a neuroprotective effect on autistic conditions by modulating these signalling pathways. Consequently, the primary objective of this study was to examine potential neuroprotective properties of GST by modulating JAK/STAT and PPAR-gamma levels in intracerebroventricular propionic acid (ICV PPA) induced experimental model of autism in adult rats. In this study, the first 11 days of ICV-PPA injections in rats resulted in autism-like behavioural, neurochemical, morphological, and histopathological changes. The above modifications were also observed in various biological samples, including brain homogenate, CSF, and blood plasma. GST was also observed to improve autism-like behavioural impairments in autistic rats treated with PPA, including locomotion, neuromuscular coordination, depression-like behaviour, spatial memory, cognition, and body weight. Prolonged GST treatment also restored neurochemical deficits in a dose-dependent manner. Chronic PPA administration increased STAT3 and decreased PPAR gamma in autistic rat brain, CSF, and blood plasma samples, which were reversed by GST. GST also restored the gross and histopathological alterations in PPA-treated rat brains. Our results indicate the neuroprotective effects of GST in preventing autism-related behavioural and neurochemical alterations.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Pregnenodionas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/metabolismo , Modelos Animales de Enfermedad , Femenino , Quinasas Janus/metabolismo , Masculino , PPAR gamma/metabolismo , Propionatos , Ratas Wistar , Factores de Transcripción STAT/metabolismo
9.
Molecules ; 27(11)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35684498

RESUMEN

Brain tumours have unresolved challenges that include delay prognosis and lower patient survival rate. The increased understanding of the molecular pathways underlying cancer progression has aided in developing various anticancer medications. Brain cancer is the most malignant and invasive type of cancer, with several subtypes. According to the WHO, they are classified as ependymal tumours, chordomas, gangliocytomas, medulloblastomas, oligodendroglial tumours, diffuse astrocytomas, and other astrocytic tumours on the basis of their heterogeneity and molecular mechanisms. The present study is based on the most recent research trends, emphasising glioblastoma cells classified as astrocytoma. Brain cancer treatment is hindered by the failure of drugs to cross the blood-brain barrier (BBB), which is highly impregnableto foreign molecule entry. Moreover, currently available medications frequently fail to cross the BBB, whereas chemotherapy and radiotherapy are too expensive to be afforded by an average incomeperson and have many associated side effects. When compared to our current understanding of molecularly targeted chemotherapeutic agents, it appears that investigating the efficacy of specific phytochemicals in cancer treatment may be beneficial. Plants and their derivatives are game changers because they are efficacious, affordable, environmentally friendly, faster, and less toxic for the treatment of benign and malignant tumours. Over the past few years, nanotechnology has made a steady progress in diagnosing and treating cancers, particularly brain tumours. This article discusses the effects of phytochemicals encapsulated in nanoparticles on molecular targets in brain tumours, along with their limitations and potential challenges.


Asunto(s)
Antineoplásicos , Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Astrocitoma/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
10.
Molecules ; 27(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745001

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe adult motor neuron disease that causes progressive neuromuscular atrophy, muscle wasting, weakness, and depressive-like symptoms. Our previous research suggests that mercury levels are directly associated with ALS progression. MeHg+-induced ALS is characterised by oligodendrocyte destruction, myelin basic protein (MBP) depletion, and white matter degeneration, leading to demyelination and motor neuron death. The selection of MeHg+ as a potential neurotoxicant is based on our evidence that it has been connected to the development of ALS-like characteristics. It causes glutamate-mediated excitotoxicity, calcium-dependent neurotoxicity, and an ALS-like phenotype. Dysregulation of IGF-1/GLP-1 signalling has been associated with ALS progression. The bioactive amino acid 4-hydroxyisoleucine (HI) from Trigonella foenum graecum acts as an insulin mimic in rodents and increases insulin sensitivity. This study examined the neuroprotective effects of 4-HI on MeHg+-treated adult Wistar rats with ALS-like symptoms, emphasising brain IGF1/GLP-1 activation. Furthermore, we investigated the effect of 4-HI on MBP levels in rat brain homogenate, cerebrospinal fluid (CSF), blood plasma, and cell death indicators such as caspase-3, Bax, and Bcl-2. Rats were assessed for muscular strength, locomotor deficits, depressed behaviour, and spatial learning in the Morris water maze (MWM) to measure neurobehavioral abnormalities. Doses of 4-HI were given orally for 42 days in the MeHg+ rat model at 50 mg/kg or 100 mg/kg to ameliorate ALS-like neurological dysfunctions. Additionally, neurotransmitters and oxidative stress markers were examined in rat brain homogenates. Our findings suggest that 4-HI has neuroprotective benefits in reducing MeHg+-induced behavioural, neurochemical, and histopathological abnormalities in ALS-like rats exposed to methylmercury.


Asunto(s)
Esclerosis Amiotrófica Lateral , Compuestos de Metilmercurio , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Animales , Péptido 1 Similar al Glucagón/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Isoleucina/análogos & derivados , Compuestos de Metilmercurio/toxicidad , Neuronas Motoras , Ratas , Ratas Wistar
11.
Molecules ; 27(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36432051

RESUMEN

Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.


Asunto(s)
Adenilil Ciclasas , Enfermedad de Parkinson , Animales , Ratas , Oxidopamina/efectos adversos , Colforsina/farmacología , Adenilil Ciclasas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Mitocondrias/metabolismo
12.
Neurochem Res ; 46(11): 2867-2884, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34075522

RESUMEN

Methylmercury (MeHg) is a potent neurotoxin that causes neurotoxicity and neuronal cell death. MeHg exposure also leads to oligodendrocyte destruction, glial cell overactivation, and demyelination of motor neurons in the motor cortex and spinal cord. As a result, MeHg plays an important role in the progression of amyotrophic lateral sclerosis (ALS)-like neurocomplications. ALS is a fatal neurodegenerative disorder in which neuroinflammation is the leading cause of further CNS demyelination. Nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling pathway was thought to be a potential target for neuroprotection in ALS. Acetyl-11-keto-beta-boswellic acid (AKBA) is a multi-component pentacyclic triterpenoid mixture derived from Boswellia serrata with anti-inflammatory and antioxidant properties. The research aimed to investigate whether AKBA, as a Nrf2 / HO-1 activator, can provide protection against ALS. Thus, we explored the role of AKBA on the Nrf2/HO-1 signaling pathway in a MeHg-induced experimental ALS model. In this study, ALS was induced in Wistar rats by oral gavage of MeHg 5 mg/kg for 21 days. An open field test, force swim test, and grip strength were performed to observe experimental rats' motor coordination behaviors. In contrast, a morris water maze was performed for learning and memory. Administration of AKBA 50 mg/kg and AKBA 100 mg/kg continued from day 22 to 42. Neurochemical parameters were evaluated in the rat's brain homogenate. In the meantime, post-treatment with AKBA significantly improved behavioral, neurochemical, and gross pathological characteristics in the brain of rats by increasing the amount of Nrf2/HO-1 in brain tissue. Collectively, our findings indicated that AKBA could potentially avoid demyelination and encourage remyelination.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Compuestos de Metilmercurio/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Neuroprotección/efectos de los fármacos , Triterpenos/uso terapéutico , Esclerosis Amiotrófica Lateral/inducido químicamente , Esclerosis Amiotrófica Lateral/prevención & control , Animales , Femenino , Masculino , Neuroprotección/fisiología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Triterpenos/farmacología
13.
Mol Cell Biochem ; 476(3): 1401-1409, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33389492

RESUMEN

Vitiligo is autoimmune, acquired, idiopathic, chronic, and progressive de/hypopigmentary cutaneous condition that targets the cell-producing pigment called melanin. It binds to a thread of great disappointment and emotional stress in societies. Combining multiple stress-related theories like toxic compound accumulation, autoimmunity, mutations, altered cellular environment, infection, impaired migration/proliferation, and immunological mismatch of anti-melanocyte and self-reactive T-cells that cause melanocytes damage is formulated resulting in vitiligo. Vitiligo has an orphan status for drug synthesis. Still, different therapies are available, with topical steroids and narrow-band ultraviolet-B monotherapy being the most common treatments, others including medical, physical, or surgical, but not effective. Each modality has its baggage of disadvantages and side effects. Stimulation of the transcriptional process for melanogenesis is mainly achieved by the cAMP-dependent activation of several melanogenic genes by MITF. In this review, we summarized that cAMP encourages the expression of the enzyme tyrosinase, TYRP1, TYRP2, and most other biological effects of cAMP are mediated through the cAMP-dependent PKA pathway resulting in CREB phosphorylation. It has been shown that TYRP1 and 2 do not have cAMP response elements (CREs) in promoting regions; the regulation of these genes by cAMP occurs through the direct participation of MITF during melanogenesis. The available medicines, therefore, only provide symptomatic relief, but do not stop the disease progression. In addition, the treatment process needs to be changed; existing approaches need to be overlooked for patients who are suffering and therefore analyze its efficacy and safety to achieve a favorable risk-benefit ratio.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor de Transcripción SOX9/metabolismo , Vitíligo/prevención & control , Animales , Humanos , Melaninas/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Monofenol Monooxigenasa/metabolismo , Fosforilación , Calidad de Vida , Riesgo , Transducción de Señal , Linfocitos T/citología , Transcripción Genética , Vitíligo/metabolismo
14.
Neurol Sci ; 42(8): 3145-3166, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34018075

RESUMEN

The prominent causes for motor neuron diseases like ALS are demyelination, immune dysregulation, and neuroinflammation. Numerous research studies indicate that the downregulation of IGF-1 and GLP-1 signaling pathways plays a significant role in the progression of ALS pathogenesis and other neurological disorders. In the current review, we discussed the dysregulation of IGF-1/GLP-1 signaling in neurodegenerative manifestations of ALS like a genetic anomaly, oligodendrocyte degradation, demyelination, glial overactivation, immune deregulation, and neuroexcitation. In addition, the current review reveals the IGF-1 and GLP-1 activators based on the premise that the restoration of abnormal IGF-1/GLP-1 signaling could result in neuroprotection and neurotrophic effects for the clinical-pathological presentation of ALS and other brain diseases. Thus, the potential benefits of IGF-1/GLP-1 signal upregulation in the development of disease-modifying therapeutic strategies may prevent ALS and associated neurocomplications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Factor I del Crecimiento Similar a la Insulina , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Humanos , Transducción de Señal
15.
Metab Brain Dis ; 36(5): 911-925, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33635478

RESUMEN

Multiple Sclerosis (MS) is a progressive neurodegenerative disease with clinical signs of neuroinflammation and the central nervous system's demyelination. Numerous studies have identified the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) overexpression and the low level of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in MS pathogenesis. Guggulsterone (GST), an active component derived from 'Commiphora Mukul,' has been used to treat various diseases. Traditional uses indicate that GST is a suitable agent for anti-inflammatory action. Therefore, we assessed the therapeutic potential of GST (30 and 60 mg/kg) in ethidium bromide (EB) induced demyelination in experimental rats and investigated the molecular mechanism by modulating the JAK/STAT and PPAR-γ receptor signaling. Wistar rats were randomly divided into six groups (n = 6). EB (0.1%/10 µl) was injected selectively in the intracerebropeduncle (ICP) region for seven days to cause MS-like manifestations. The present study reveals that long-term administration of GST for 28 days has a neuroprotective effect by improving behavioral deficits (spatial cognition memory, grip, and motor coordination) associated with lower STAT-3 levels. While elevating PPAR-γ and myelin basic protein levels in rat brains are consistent with the functioning of both signaling pathways. Also, GST modulates the neurotransmitter level by increasing Ach, dopamine, serotonin and by reducing glutamate. Moreover, GST ameliorates inflammatory cytokines (TNF, IL-1ß), and oxidative stress markers (AchE, SOD, catalase, MDA, GSH, nitrite). In addition, GST prevented apoptosis, as demonstrated by the reduction of caspase-3 and Bax. Simultaneously, Bcl-2 elevation and the restoration of gross morphology alterations are also recovered by long-term GST treatment. Therefore, it can be concluded that GST may be a potential alternative drug candidate for MS-related motor neuron dysfunctions.


Asunto(s)
Encéfalo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Pregnenodionas/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Etidio , Femenino , Ácido Glutámico/metabolismo , Masculino , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/metabolismo , Fármacos Neuroprotectores/uso terapéutico , PPAR gamma/metabolismo , Pregnenodionas/uso terapéutico , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo
16.
Bioorg Chem ; 101: 104010, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32615464

RESUMEN

Benzodiazepines (BZDs) represent a class of privilege scaffold in the modern era of medicinal chemistry as CNS active agents and BZD based drugs are used to treat different psychotic disorders. Inspired from the therapeutic potential of BZDs as promising CNS active agents, in the present work three different series of 1,5-benzodiazepines bearing various substitutions at position 2 and 4 of the benzodiazepine core were synthesized by condensing different substituted chalcones with o-phenylenediamine in the presence of piperidine as a base catalyst. Structural characterization of title compounds was done by using various analytical techniques such as IR, NMR, elemental analysis and mass spectral data. All the synthesized compounds (9a-d, 10a-e and 11a-c) were subjected to in vivo neuropharmacological studies to evaluate their CNS depressant and antiepileptic activity. Results of in vivo evaluation data showed that analogue 11b exhibited potent CNS depressant activity which was comparable to the standard drug diazepam. Compounds 10b and 10c displayed significant antiepileptic activity however they were less potent than the standard drug phenobarbitone. Molecular docking studies were performed using MOE software to find the interaction pattern and binding mode at the GABAA receptor (PDB Id: 6HUP). The results of the docking studies were in good agreement with the observed in vivo activity and revealed the satisfactory binding mode of the compounds within the binding site of the protein. The docking scores for the most promising candidates 10c, 11b and Diazepam were found to be -9.18, -9.46 and -9.88, respectively. Further, the compounds showed compliance with the Lipinski's 'rule of five' and exhibited favourable drug-likeness scores. The identified leads can be explored further for the design and development of new BZD based psychotropic agents.


Asunto(s)
Anticonvulsivantes/farmacología , Antidepresivos/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacología , Diseño de Fármacos , Animales , Anticonvulsivantes/química , Antidepresivos/química , Conducta Animal/efectos de los fármacos , Benzodiazepinas/síntesis química , Fármacos del Sistema Nervioso Central/síntesis química , Simulación por Computador , Simulación del Acoplamiento Molecular , Ratas , Receptores de GABA-A/efectos de los fármacos , Relación Estructura-Actividad
17.
Neurol Sci ; 40(1): 13-23, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30267336

RESUMEN

Parkinson's disease (PD) is the second most common multifactorial neurodegenerative disorder affecting 3% of population during elder age. The loss of substantia nigra, pars compacta (SNpc) neurons and deficiency of striatal dopaminergic neurons produces stables motor deficient. Further, increase alpha-synuclein accumulation, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation plays a crucial role in the pathogenesis of PD. Alpha-synuclein protein encodes for SNCA gene and disturbs the normal physiological neuronal signaling via altering mitochondrial homeostasis. The level of α-synuclein is increased in both normal aging and PD brain to a greater extent and secondly reduced clearance results in accumulation of Lewy bodies (LB). Emerging evidences indicate that mitochondrial dysfunction might be a common cause but pathological insult through protein misfolding, aggregation, and accumulation leads to neuronal apoptosis. The observation supporting that expression of DJ-1, LLRK2, PARKIN, PINK1, and excessive excitotoxicity mediated by dysbalance between GABA and glutamate reduced mitochondrial functioning and increased neurotoxicity. Therefore, the present review summarizes the various pathological mechanisms and also explores the therapeutic strategies which could be useful to ameliorate movement disorder like Parkinsonism.


Asunto(s)
Manejo de la Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , alfa-Sinucleína/fisiología , Animales , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/fisiología , Humanos , Mitocondrias/patología , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/diagnóstico , Ubiquitina-Proteína Ligasas/fisiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-38305310

RESUMEN

INTRODUCTION: In the present study, solid lipid nanoparticles loaded with Rosiglitazone and probiotics were prepared via solvent emulsification diffusion. As a lipid and surfactant, Gleceryl monostearate and Pluronic -68 were used in the formulation process. METHOD: During characterization, it was determined that ingredient quantity variations significantly impacted Rosiglitazone loading capacity, particle size, polydispersity index, etc. In an optimized formulation of RSG-PB loaded SLNs, spherical particles with a mean particle size of 147.66±1.52 nm, PDI of 0.42±0.02, and loading capacity of 45.36±0.20 were identified. RESULT: Moreover, the developed SLNs had the potential to discharge the drug for up to 24 hours, as predicted by Higuchi's pharmacokinetic model. The SLNs were stable at 25°C/60%RH for up to 60 days. There was little to no change in particle size, PDI, or loading capacity. In addition, the number of probiotic bacteria was determined using the standard plate count procedure. Further, the antioxidant effect of the prepared formulation is evaluated using the DPPH assay method. CONCLUSION: This study concludes that the method used to fabricate RSG-probiotic-loaded SLNs is straightforward and yields favorable results regarding various parameters, including sustained release property, particle size, PDI, and percent drug loading stability. Furthermore, DPPH radical scavenging activity shows the high antioxidant potential of RSG-PB SLNs when compared to RSG and probiotics alone.

20.
Eur J Med Chem ; 266: 116139, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38252989

RESUMEN

Diabetes is one of the fastest-growing metabolic disorders, nearly doubling the number of patients each year. There are different treatment approaches available for the management of diabetes, which lacks due to their side effects. The inhibition of enzymes involved in the metabolism of complex polysaccharides to monosaccharides has proven beneficial in patients with type 2 diabetes mellitus. Two enzymes, α-amylase and α-glucosidase, have emerged as potential drug targets and are widely explored for drug development against type 2 diabetes mellitus. In this context, thiazolidine-2,4-diones (TZDs) have emerged as potential drug candidates for developing newer molecules against α-amylase and α-glucosidase. Nineteen TZD-hybrids were synthesized and evaluated in vitro α-amylase and α-glucosidase inhibitory activity. The compounds 7i, 7k, and 7p have emerged as the best dual inhibitors with IC50 of 10.33 ± 0.11-20.94 ± 0.76 µM and 10.19 ± 0.25-24.07 ± 1.56 µM against α-glucosidase and α-amylase, respectively. The derivatives had good anti-oxidant activity, displaying IC50 = 14.95 ± 0.65-23.27 ± 0.99 µM. The compounds 7k and 7p showed the best inhibition of reactive oxygen species in the PNAC-1 cells. The molecules exhibit good binding within the active site of α-amylase (PDB id: 1B2Y) and α-glucosidase (PDB id: 3W37), displaying binding energies of -7.5 to -10.7 kcal/mol and -7.4 to -10.3 kcal/mol, respectively. Further, the compounds were nontoxic (LD50 = 500-1311 mg/kg) and possessed good GI absorption. The compounds 7i, 7k, and 7p were evaluated in vivo antidiabetic activity in an STZ-induced diabetic model in Wistar rats. The compound 7p emerged as the best compound in the in vivo studies; however, the activity was lesser than that of the standard drug pioglitazone.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Tiazolidinedionas , Humanos , Ratas , Animales , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Tiazolidinas/uso terapéutico , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Ratas Wistar , alfa-Amilasas , Inhibidores de Glicósido Hidrolasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA