Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioprocess Biosyst Eng ; 47(1): 91-103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38085351

RESUMEN

A continuous stirred tank bioreactor (CSTB) with cell recycling combined with ceramic membrane technology and inoculated with Rhodococcus opacus PD630 was employed to treat petroleum refinery wastewater for simultaneous chemical oxygen demand (COD) removal and lipid production from the retentate obtained during wastewater treatment. In the present study, the COD removal efficiency (CODRE) (%) and lipid concentration (g/L) were predicted using two artificial intelligence models, i.e., an artificial neural network (ANN) and a neuro-fuzzy neural network (NF-NN) with a network topology of 6-25-2 being the best for NF-NN. The results revealed the superiority of NF-NN over ANN in terms of determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE). Three learning algorithms were tested with NF-NN; among them, the Bayesian regularization backpropagation (BR-BP) outperformed others. The sensitivity analysis revealed that, if solid retention time and biomass concentrations were maintained between 35 and 75 h and 3.0 g/L and 3.5 g/L, respectively, high CODRE (93%) and lipid concentration (2.8 g/L) could be obtained consistently.


Asunto(s)
Inteligencia Artificial , Petróleo , Eliminación de Residuos Líquidos/métodos , Teorema de Bayes , Reactores Biológicos , Cerámica , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA