Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Environ Res ; 88(7): 652-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27329061

RESUMEN

The contamination of the aquatic environment with organic micropollutants, such as veterinary pharmaceuticals, has become an increasingly serious problem and has aroused attention in the course of the last decades. This study presents a screening for a series of veterinary antibiotics, potentially introduced by the application of liquid manure, in ground- and surface water of a drinking water catchment in Lower Saxony, Germany. Of the 26 compounds analyzed, eight, including sulfadiazine, sulfapyridine, sulfamethoxazole, trimethoprim, dehydrato-erythromycin, sulfadimidine, tylosin, and tetracycline were detected in surface water samples. Trimethoprim was detected in 11 out of 15 shallow groundwater samples, indicating its high environmental relevance. Column sorption experiments conducted on trimethoprim show a comparatively moderate sorption affinity to sandy aquifer material with a retardation coefficient of 5.7.


Asunto(s)
Antibacterianos/análisis , Agua Potable/análisis , Monitoreo del Ambiente , Agua Subterránea/análisis , Estiércol/análisis , Contaminantes Químicos del Agua/análisis , Alemania
2.
Sci Total Environ ; 821: 153415, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35090912

RESUMEN

The main entry path of veterinary antibiotics to the environment is the application of liquid manure on agricultural land. Along with the manure, they can infiltrate into soils and leach into groundwater. As the environmental behavior of veterinary antibiotics is strongly affected by the process of sorption, the comprehensive knowledge regarding their sorption behavior is key to a reliable risk assessment. However, the flow patterns in field experiments are influenced by several factors that can hardly be distinguished, while most of the sorption studies on veterinary antibiotics were designed without manure or as batch experiments, which means that the effects of manure on the transport behavior of the antibiotic substances remained unaccounted for. In order to understand the results from a previous field experiment and concurrently fill the identified knowledge gap, a column experiment was performed to investigate the effects of manure on the transport of sulfamethazine, sulfadiazine, tetracycline, and lincomycin in soil. Results show that sulfamethazine and sulfadiazine were highly mobile in both the presence and absence of manure, while tetracycline did not appear at the outlet of any column. Despite their high mobility, in the presence of manure the sulfonamides were slightly delayed compared to the conservative tracer as was also seen during the previous field experiment. Lincomycin transport was already delayed in the absence of manure. Furthermore, in the presence of manure, lincomycin was delayed by 4.5 times relative to the tracer, which clearly underlined the influence of manure on the transport of lincomycin and offers an explanation why lincomycin has barely been detected in the long-term field experiment. However, in contrast to the results obtained in the field experiment, the recovery rates were the same in presence and absence of manure for both sulfonamides and lincomycin, probably due to reduced degradation at the applied concentration level.


Asunto(s)
Estiércol , Contaminantes del Suelo , Antibacterianos , Laboratorios , Suelo , Contaminantes del Suelo/análisis , Sulfadiazina
3.
Sci Total Environ ; 778: 146306, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33725600

RESUMEN

Lincomycin, an antibiotic commonly used in veterinary medicine, is frequently detected within the agricultural environment. The active compound enters the aquatic environment after manure application via infiltration or surface run-off, where it may negatively affect non-target organisms and contribute to the development and spread of resistant genes. However, a review on the fate of lincomycin within the agricultural and aquatic environment is lacking. Hence, to provide an overview, the main part of this paper summarizes the current literature on the occurrence, effects and behaviour of lincomycin in all relevant environmental compartments, including manure, soil, surface water and groundwater. Lincomycin was regularly detected in all environmental compartments and even in the food chain, appeared to sorb temporarily and mainly in its cationic microspecies, and dissipated after time periods that could cover days, months, or years, depending on the compartment and conditions. As noticed during the literature research conducted, information on the attenuation of lincomycin in terms of biological degradation in the aquatic environment is widely lacking, although it seems that biodegradation is the major removal mechanism. Therefore, a laboratory study, implemented by means of batch experiments, was carried out in order to evaluate the biological degradation of lincomycin in the aquatic environment. First order degradation started after a start-up phase of 10-14 days with a degradation rate constant of 0.55 d-1 and a half-life time of 30 h. Further, the degradation rate constant was found to be independent of initial concentrations as long as concentrations did not exceed a concentration level at which the bacteria were inhibited, as it was the case in this study at a concentration of 10 mg L-1. Biodegradation was confirmed as an important degradation pathway for LIN in the aquatic environment.


Asunto(s)
Antibacterianos , Lincomicina , Agricultura , Estiércol , Suelo
4.
Environ Pollut ; 265(Pt B): 114930, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32544789

RESUMEN

The purpose of this long-term experiment was on gaining more insights into the environmental behaviour of veterinary antibiotics in the subsurface after application with manure. Therefore, manure spiked with a bromide tracer and eight antibiotics (enrofloxacin, lincomycin, sulfadiazine, sulfamethazine, tetracycline, tiamulin, tilmicosin and tylosin) in concentrations of milligrams per litre were applied at an experimental field site. Their pathway was tracked by continuous extraction of soil pore water at different depths and systematic sampling of groundwater for a period of two years. Seven target compounds were detected in soil pore water of which four leached into groundwater. Concentrations of the detected target compounds were, with few exceptions, in the range of nanograms per litre. It was concluded that a large fraction of the investigated antibiotics sorbed or degraded already within the first meter of the soil. Further, it was inferred from the data that long and warm dry periods cause attenuation of the target compounds through increased degradation or sorption occurring in the soil. In addition, the comprehensive data-set allowed to estimate a retardation factor between 1.1 and 2.0 for sulfamethazine in a Plaggic Anthrosol soil, and to classify the individual compounds by environmental relevance based on transport behaviour and persistence. According to the distribution of resistant genes in the environment, sulfamethazine was found to be the most mobile and persistent substance.


Asunto(s)
Contaminantes del Suelo/análisis , Drogas Veterinarias , Agricultura , Antibacterianos/análisis , Monitoreo del Ambiente , Estiércol/análisis , Suelo
5.
Environ Sci Process Impacts ; 21(12): 2093-2108, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31631204

RESUMEN

Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.


Asunto(s)
Bacterias , Ríos/microbiología , Aguas Residuales/microbiología , Microbiología del Agua/normas , Contaminantes Químicos del Agua/análisis , Bacterias/clasificación , Berlin , Biodiversidad , Sedimentos Geológicos/microbiología , Alemania , Semivida , Ríos/química , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA