Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Exp Bot ; 69(22): 5507-5518, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30219898

RESUMEN

The photosynthesis of green tomatoes contributes to fruit growth and carbon economy. The tomato auxin response factor 10 (SlARF10) belongs to the ARF family and is located in nucleus. In this study, we found that SlARF10 was highly expressed in green fruit. Overexpression of SlARF10 in fruit produced a dark-green phenotype whilst knock-down by RNAi produced a light-green phenotype. Autofluorescence and chlorophyll content analyses confirmed the phenotypes, which indicated that SlARF10 plays an important role in chlorophyll accumulation. Overexpression of SlARF10 positively affected photosynthesis in both leaves and fruit. Furthermore, SlARF10-overexpression lines displayed improved accumulation of starch, fructose, and sucrose in fruit, whilst SlARF10-RNAi lines showed decreased accumulation of starch and sucrose. Regulation of SlARF10 expression altered the expression of AGPase starch biosynthesis genes. SlARF10 positively regulated the expression of SlGLK1, POR, CBP1, and CBP2, which are related to chlorophyll metabolism and regulation. Electrophoretic mobility shift assays confirmed that SlARF10 directly targets to the SlGLK1 promoter. Our results thus indicate that SlARF10 is involved in chlorophyll accumulation by transcriptional activation of SlGLK1 expression in tomato fruit, and provide insights into the link between auxin signaling, chloroplast activity, and sugar metabolism during tomato fruit development.


Asunto(s)
Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Azúcares/metabolismo , Factores de Transcripción/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
2.
BMC Cancer ; 16(1): 815, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769251

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) has very high prevalence and associated-mortality. However, targeted therapies that are currently used in clinical practice for HCC have certain limitations, in part because of the lack of reliable and clinically applicable biomarkers that can be used for diagnosis and prognosis assessments and for the surveillance of treatment effectiveness. METHODS: Meta-analysis was used to analyze the integrated microarray data for global identification of a set of robust biomarkers for HCC. Quantitative RT-PCR (qRT-PCR) was performed to validate the expression levels of selected genes. Gene expression was inhibited by siRNA. CellTiter 96® AQueous One Solution Cell Proliferation assays were used to determine cell proliferation, and Transwell assays were used to determine cell migration and invasion potential. RESULTS: Meta-analysis of the expression data provided a gene expression signature from a total of 1525 patients with HCC, showing 1529 up-regulated genes and 478 down-regulated genes in cancer samples. The expression levels of genes having strong clinical significance were validated by qRT-PCR using primary HCC tissues and the paired adjacent noncancerous liver tissues. Up-regulation of VPS45, WIPI1, TTC1, IGBP1 and KLHL21 genes and down-regulation of FCGRT gene were confirmed in clinical HCC samples. KLHL21 was the most promising gene for potential use as a bioclinical marker in this analysis. Abrogating expression of it significantly inhibited cell proliferation, migration and invasion. CONCLUSIONS: Our study suggests that KLHL21 is a potential target for therapeutic intervention. Our findings also provide novel candidate genes on a genome-wide scale, which may have significant impact on the design and execution of effective therapy of HCC patients.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Cultivadas , Análisis por Conglomerados , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Pronóstico
3.
Nutrients ; 13(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34836153

RESUMEN

Probiotic intake has been shown to improve certain physiological health indicators. We aimed to examine effects of Lactobacillus casei LTL1879, obtained from long-lived elderly volunteers, on blood biochemical, oxidative, and inflammatory markers and gut microbiota in twenty healthy, young volunteers. Volunteers were randomly divided into equal probiotic and placebo groups and changes in blood biochemical indicators, oxidative and inflammatory markers, and gut microbiota were examined after three weeks of probiotic intervention. The probiotic group's antioxidant levels were significantly enhanced post-intervention. Total antioxidant capacity (T-AOC) levels were significantly increased (p < 0.0001), while malondialdehyde (MDA) levels decreased (p < 0.05), and total superoxide dismutase (T-SOD) levels increased, but with no significant difference. In addition, Interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) levels were significantly up-regulated and down-regulated (p < 0.05, respectively). Escherichia coli, Enterococcus, and Bacteroides expression was significantly reduced (p < 0.05), while Clostridium leptum, Bifidobacterium, and Lactobacillus expression increased (p < 0.05). Volunteer health status was quantified using principal components and cluster analysis, indicating that the probiotic group's overall score was higher than that of the placebo group. The results of this pilot study suggest L. casei LTL 1879 can significantly improve specific immune, oxidative, and gut microbiota characteristics related to health factors.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos/administración & dosificación , Adulto , Anciano , Antioxidantes/metabolismo , Biomarcadores/sangre , Análisis por Conglomerados , Femenino , Voluntarios Sanos , Humanos , Masculino , Malondialdehído/sangre , Estrés Oxidativo/fisiología , Proyectos Piloto , Análisis de Componente Principal , Superóxido Dismutasa/sangre , Adulto Joven
4.
Hortic Res ; 6: 85, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645946

RESUMEN

Auxin response factors (ARFs) are involved in auxin-mediated transcriptional regulation in plants. In this study, we performed functional characterization of SlARF6A in tomato. SlARF6A is located in the nucleus and exhibits transcriptional activator activity. Overexpression of SlARF6A increased chlorophyll contents in the fruits and leaves of tomato plants, whereas downregulation of SlARF6A decreased chlorophyll contents compared with those of wild-type (WT) plants. Analysis of chloroplasts using transmission electron microscopy indicated increased sizes of chloroplasts in SlARF6A-overexpressing plants and decreased numbers of chloroplasts in SlARF6A-downregulated plants. Overexpression of SlARF6A increased the photosynthesis rate and accumulation of starch and soluble sugars, whereas knockdown of SlARF6A resulted in opposite phenotypes in tomato leaves and fruits. RNA-sequence analysis showed that regulation of SlARF6A expression altered the expression of genes involved in chlorophyll metabolism, photosynthesis and sugar metabolism. SlARF6A directly bound to the promoters of SlGLK1, CAB, and RbcS genes and positively regulated the expression of these genes. Overexpression of SlARF6A also inhibited fruit ripening and ethylene production, whereas downregulation of SlARF6A increased fruit ripening and ethylene production. SlARF6A directly bound to the SAMS1 promoter and negatively regulated SAMS1 expression. Taken together, these results expand our understanding of ARFs with regard to photosynthesis, sugar accumulation and fruit development and provide a potential target for genetic engineering to improve fruit nutrition in horticulture crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA