Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer Ther ; 22(2): 215-226, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228090

RESUMEN

CRISPR Cas9-based screening is a powerful approach for identifying and characterizing novel drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacologic inhibition of USP1 leads to decreased DNA synthesis concomitant with S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identify RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition is associated with reduced PCNA protein levels. Ectopic expression of WT or ubiquitin-dead K164R PCNA reverses USP1 inhibitor sensitivity. Our results show, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to selected BRCA1/2 WT cancer cell lines enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant tumors. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to posttranslational modifications of PCNA. Taken together, USP1 inhibition may represent a novel therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.


Asunto(s)
Neoplasias , Mutaciones Letales Sintéticas , Humanos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/genética , Ubiquitinación , Daño del ADN , Neoplasias/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
2.
Cancer Res ; 82(21): 4044-4057, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36069976

RESUMEN

Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE: A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.


Asunto(s)
Glioblastoma , Humanos , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Virus Vaccinia , Fosforilación , Proteínas Serina-Treonina Quinasas
3.
Science ; 363(6432): 1217-1222, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30872525

RESUMEN

Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.


Asunto(s)
Cromatina/metabolismo , Histona Demetilasas/metabolismo , Proteínas Nucleares/metabolismo , Oxígeno/metabolismo , Animales , Hipoxia de la Célula , Células HEK293 , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células MCF-7 , Metilación , Ratones , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA