Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Opt Express ; 28(3): 3361-3377, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122006

RESUMEN

We investigate the impact of short optical feedback on a two-state quantum dot laser. A region in the feedback parameter space is identified, where the laser emission periodically alternates between oscillation bursts from the quantum dot ground and excited state, i.e. two-color anti-phase oscillation bursts. We compare these results to the low-frequency fluctuations and regular pulse packages of single-color semiconductor lasers and show via an in-depth bifurcation analysis, that the two-color oscillation bursts originate from a torus-bifurcation of a two-state periodic orbit. A cascade of further period-doubling bifurcations produces chaotic dynamics of the burst envelope. Our findings showcase the rich dynamics and complexity, which can be generated via the interaction of electronic and photonic time scales in quantum dot lasers with optical feedback.

2.
Opt Express ; 26(17): 21872-21886, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130890

RESUMEN

Optically pumped passively modelocked vertical external-cavity surface-emitting lasers (VECSELs) can generate pulses as short as 100 fs with an intracavity semiconductor saturable absorber mirror (SESAM). Very stable soliton modelocking can be obtained, however, the high-Q-cavity, the short gain lifetime, and the kinetic-hole burning can also support rather complex multipulse instabilities which we analyze in more details here. This onset of multipulse operation limits the maximum average output power with fundamental modelocking and occurs at the roll-over of the cavity round trip reflectivity. Unfortunately, such multipulse operation sometimes can mimic stable modelocking when only limited diagnostics are available.

3.
Environ Sci Pollut Res Int ; 31(39): 51844-51857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129044

RESUMEN

Passive sampling is a crucial method for evaluating concentrations of hydrophilic organic compounds in the aquatic environment, but it is insufficiently understood to what extent passive samplers capture the intermittent emissions that frequently occur for this group of compounds. In the present study, silicone sheets and styrene-divinyl benzene-reversed phase sulfonated extraction disks with and without a polyethersulfone membrane were exposed under semi-field conditions in a 31 m3 flume at three different flow velocities. Natural processes and spiking/dilution measures caused aqueous concentrations to vary strongly with time. The data were analyzed using two analytical models that account for these time-variable concentrations: a sampling rate model and a diffusion model. The diffusion model generally gave a better fit of the data than the sampling rate model, but the difference in residual errors was quite small (median errors of 19 vs. 25% for silicone and 22 vs. 25% for SDB-RPS samplers). The sampling rate model was therefore adequate enough to evaluate the time-integrative capabilities of the samplers. Sampler performance was best for SDB-RPS samplers with a polyethersulfone membrane, despite the occurrence of lag times for some compounds (0.1 to 0.4 days). Sampling rates for this design also spanned a narrower range (80 to 110 mL/day) than SDB-RPS samplers without a membrane (100 to 660 mL/day). The effect of biofouling was similar for all compounds and was consistent with a biofouling layer thickness of 150 µm.


Asunto(s)
Monitoreo del Ambiente , Interacciones Hidrofóbicas e Hidrofílicas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sulfonas/química , Sulfonas/análisis , Polímeros
4.
Sci Rep ; 11(1): 18558, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535698

RESUMEN

We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal operation conditions, which allow for wider tuning ranges than usually observed in conventional semiconductor lasers. The lasers are modeled by Maxwell-Bloch type class-C equations. For our analysis, we analytically determine the steady state solutions, analyze the symmetries of the system and numerically characterize the emission dynamics via the underlying bifurcation structure. The polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the parameter space spanned by frequency detuning, coupling strength and coupling phase.

5.
Environ Sci Pollut Res Int ; 28(9): 11697-11707, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33438128

RESUMEN

In this study, three different passive sampling receiving phases were evaluated, with a main focus on the comparability of established styrene-divinylbenzene reversed phase sulfonated (SDB-RPS) sampling phase from Empore™ (E-RPS) and novel AttractSPE™ (A-RPS). Furthermore, AttractSPE™ hydrophilic-lipophilic balance (HLB) disks were tested. To support sampling phase selection for ongoing monitoring needs, it is important to have information on the characteristics of alternative phases. Three sets of passive samplers (days 1-7, days 8-14, and days 1-14) were exposed to a continuously exchanged mixture of creek and rainwater in a stream channel system under controlled conditions. The system was spiked with nine pesticides in two peak scenarios, with log KOW values ranging from approx. - 1 to 5. Three analytes were continuously spiked at a low concentration. All three sampling phases turned out to be suitable for the chosen analytes, and, in general, uptake rates were similar for all three materials, particularly for SDB-RPS phases. Exceptions concerned bentazon, where E-RPS sampled less than 20% compared with the other phases, and nicosulfuron, where HLB sampled noticeably more than both SDB-RPS phases. All three phases will work for environmental monitoring. They are very similar, but differences indicate one cannot just use literature calibration data and transfer these from one SDB phase to another, though for most compounds, it may work fine.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Interacciones Hidrofóbicas e Hidrofílicas , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
6.
Sci Rep ; 9(1): 1783, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741953

RESUMEN

We experimentally and theoretically investigate the pulsed emission dynamics of a three section tapered semiconductor quantum dot laser. The laser output is characterized in terms of peak power, pulse width, timing jitter and amplitude stability and a range of outstanding pulse performance is found. A cascade of dynamic operating regimes is identified and comprehensively investigated. We propose a microscopically motivated traveling-wave model, which optimizes the computation time and naturally allows insights into the internal carrier dynamics. The model excellently reproduces the measured results and is further used to study the pulse-generation mechanism as well as the influence of the geometric design on the pulsed emission. We identify a pulse shortening mechanism responsible for the device performance, that is unique to the device geometry and configuration. The results may serve as future guidelines for the design of monolithic high-power passively mode-locked quantum dot semiconductor lasers.

7.
Environ Sci Eur ; 30(1): 17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29805951

RESUMEN

BACKGROUND: For evaluating the fate of xenobiotics in the environment, a variety of degradation or environmental metabolism experiments are routinely conducted. The data generated in such experiments are evaluated by optimizing the parameters of kinetic models in a way that the model simulation fits the data. No comparison of the main software tools currently in use has been published to date. This article shows a comparison of numerical results as well as an overall, somewhat subjective comparison based on a scoring system using a set of criteria. The scoring was separately performed for two types of uses. Uses of type I are routine evaluations involving standard kinetic models and up to three metabolites in a single compartment. Evaluations involving non-standard model components, more than three metabolites or more than a single compartment belong to use type II. For use type I, usability is most important, while the flexibility of the model definition is most important for use type II. RESULTS: Test datasets were assembled that can be used to compare the numerical results for different software tools. These datasets can also be used to ensure that no unintended or erroneous behaviour is introduced in newer versions. In the comparison of numerical results, good agreement between the parameter estimates was observed for datasets with up to three metabolites. For the now unmaintained reference software DegKinManager/ModelMaker, and for OpenModel which is still under development, user options were identified that should be taken care of in order to obtain results that are as reliable as possible. Based on the scoring system mentioned above, the software tools gmkin, KinGUII and CAKE received the best scores for use type I. Out of the 15 software packages compared with respect to use type II, again gmkin and KinGUII were the first two, followed by the script based tool mkin, which is the technical basis for gmkin, and by OpenModel. CONCLUSIONS: Based on the evaluation using the system of criteria mentioned above and the comparison of numerical results for the suite of test datasets, the software tools gmkin, KinGUII and CAKE are recommended for use type I, and gmkin and KinGUII for use type II. For users that prefer to work with scripts instead of graphical user interfaces, mkin is recommended. For future software evaluations, it is recommended to include a measure for the total time that a typical user needs for a kinetic evaluation into the scoring scheme. It is the hope of the authors that the publication of test data, source code and overall rankings foster the evolution of useful and reliable software in the field.

8.
Environ Sci Pollut Res Int ; 14(3): 190-3, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17561778

RESUMEN

GOAL, SCOPE AND BACKGROUND: One of the advantages of long-term mesocosm experiments as compared to short-term standard toxicity tests in the laboratory is the potential for detecting secondary effects due to the interaction of species and recovery with biomass of macrophytes being an important endpoint. However, generating biomass data by harvesting is often laborious, time-consuming, costly and restricted to the end of the experiment. Moreover, valuable information may get lost, in particular in single application studies, since maximal primary effects and secondary effects or recovery occur per se at different times. Potamogeton natans was used as an example in order to test whether number and area of floating leaves can be reliably measured and be used as intermediate and final end-points in mesocosm effect studies. METHODS: Digital photos, which were taken of the water surface in the course of an indoor pond mesocosm study on herbicide effects, were subjected to image analysis. The results were compared to wet weight and ash-free dry weight of Potamogeton at the end of the herbicide study. RESULTS AND DISCUSSION: Both number and area of floating leaves indicated the same herbicide effects as wet weight and ash-free dry weight of Potamogeton. Error introduced by the different work steps is small and can be further minimised by a number of method improvements. RECOMMENDATIONS AND PERSPECTIVES: In indoor mesocosm studies, errors due to the perspective adjustment may be circumvented by taking the photos perpendicular to the water surface. Correction for lens aberration, identical light conditions and the use of fluorescence images are considered promising. Field applications are proposed.


Asunto(s)
Ecosistema , Herbicidas/toxicidad , Potamogetonaceae/crecimiento & desarrollo , Biomasa , Agua Dulce , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Potamogetonaceae/anatomía & histología , Potamogetonaceae/efectos de los fármacos , Programas Informáticos , Pruebas de Toxicidad/métodos
9.
Environ Sci Pollut Res Int ; 12(1): 5-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15768734

RESUMEN

SCOPE: The German Federal Environmental Agency has put into operation a new modular mesocosm system consisting of eight outdoor and eight indoor ponds and streams in order to investigate fate and effects of chemicals and municipal wastewater in aquatic ecosystems. General design and special characteristics are given to demonstrate the wide range of possibilities for experimental research. GENERAL DESIGN: Each of the 16 streams with riffle and pool sections can be varied in length up to 106 m. The streams can be run as circular or flow-through systems at a flow velocity of 0.02 to 0.6 m/s. Physico-chemical standard parameters are measured on-line. The 16 ponds, which can be connected to the stream systems, are equipped with drainage and pore water-sampling devices for simulating processes in the littoral zone including influent and effluent ground water flow. PERSPECTIVES: Since the highly flexible and controllable construction also allows treating a wide range of hydrological and ecological experiments external institutions are invited to submit proposals.


Asunto(s)
Ecosistema , Agua Dulce , Medición de Riesgo , Contaminación del Agua , Alemania , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA