Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 605(7910): 453-456, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585342

RESUMEN

Atoms with a highly excited electron, called Rydberg atoms, can form unusual types of molecular bonds1-4. The bonds differ from the well-known ionic and covalent bonds5,6 not only by their binding mechanisms, but also by their bond lengths ranging up to several micrometres. Here we observe a new type of molecular ion based on the interaction between the ionic charge and a flipping-induced dipole of a Rydberg atom with a bond length of several micrometres. We measure the vibrational spectrum and spatially resolve the bond length and the angular alignment of the molecule using a high-resolution ion microscope7. As a consequence of the large bond length, the molecular dynamics is extremely slow. These results pave the way for future studies of spatio-temporal effects in molecular dynamics (for example, beyond Born-Oppenheimer physics).

2.
Phys Rev Lett ; 130(2): 023002, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706402

RESUMEN

Vibrational dynamics in conventional molecules usually takes place on a timescale of picoseconds or shorter. A striking exception are ultralong-range Rydberg molecules, for which dynamics is dramatically slowed down as a consequence of the huge bond length of up to several micrometers. Here, we report on the direct observation of vibrational dynamics of a recently observed Rydberg-atom-ion molecule. By applying a weak external electric field of a few millivolts per centimeter, we are able to control the orientation of the photoassociated ultralong-range Rydberg molecules and induce vibrational dynamics by quenching the electric field. A high resolution ion microscope allows us to detect the molecule's orientation and its temporal vibrational dynamics in real space. Our study opens the door to the control of molecular dynamics in Rydberg molecules.

3.
Phys Rev Lett ; 131(21): 213002, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38072586

RESUMEN

We report on the observation of confinement-induced resonances for strong three-dimensional (3D) confinement in a lattice potential. Starting from a Mott-insulator state with predominantly single-site occupancy, we detect loss and heating features at specific values for the confinement length and the 3D scattering length. Two independent models, based on the coupling between the center-of-mass and the relative motion of the particles as mediated by the lattice, predict the resonance positions to a good approximation, suggesting a universal behavior. Our results extend confinement-induced resonances to any dimensionality and open up an alternative method for interaction tuning and controlled molecule formation under strong 3D confinement.

4.
Phys Rev Lett ; 113(19): 193003, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25415904

RESUMEN

We study the dynamics of bosonic atoms in a tilted one-dimensional optical lattice and report on the first direct observation of density-induced tunneling. We show that the interaction affects the time evolution of the doublon oscillation via density-induced tunneling and pinpoint its density and interaction dependence. The experimental data for different lattice depths are in good agreement with our theoretical model. Furthermore, resonances caused by second-order tunneling processes are studied, where the density-induced tunneling breaks the symmetric behavior for attractive and repulsive interactions predicted by the Hubbard model.

5.
Science ; 356(6341): 945-948, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28572389

RESUMEN

The interplay of strong quantum correlations and far-from-equilibrium conditions can give rise to striking dynamical phenomena. We experimentally investigated the quantum motion of an impurity atom immersed in a strongly interacting one-dimensional Bose liquid and subject to an external force. We found that the momentum distribution of the impurity exhibits characteristic Bragg reflections at the edge of an emergent Brillouin zone. Although Bragg reflections are typically associated with lattice structures, in our strongly correlated quantum liquid they result from the interplay of short-range crystalline order and kinematic constraints on the many-body scattering processes in the one-dimensional system. As a consequence, the impurity exhibits periodic dynamics, reminiscent of Bloch oscillations, although the quantum liquid is translationally invariant. Our observations are supported by large-scale numerical simulations.

6.
Science ; 344(6189): 1259-62, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24926015

RESUMEN

Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA