Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276978

RESUMEN

Docetaxel (DTX) is one of the most potent anticancer drugs but its extensive side effects necessitate innovative formulations. In this study, we aimed to investigate the expression pattern of apoptotic proteins, cell cycle arrest, and apoptosis induction after treatment with encapsulated DTX in alginate-chitosan nanoparticles in both breast cancer cells (MCF-7) and peripheral blood mononuclear cells (PBMCs). The characterization of the nanoparticles revealed a spherical shape with a size <50 nm, a hydrodynamic diameter of 200 nm, a Polydispersity Index of 0.5, and an encapsulation efficiency of 98.75%. The free drug was released completely within 11 h while encapsulated DTX was released only 34% in 96 h. The encapsulated drug indicated higher cytotoxicity on MCF-7 cells and the half inhibitory concentration (IC50) value was 2 µg/ml after 72 h. Quantitative real-time PCR demonstrated a significant increase in cell death as the expression of apoptosis regulatory protein (Bcl-2) was downregulated with no impact on Bax in the MCF-7 cells. A notable decrease in the expression pattern of pro-inflammatory cytokine (IL-1ß) in PBMCs indicated less inflammation induction. Flow cytometry analysis revealed that the newly formulated drug induced less opoptosis in PBMCs than the free DTX. Cell cycle arrest in the sub-G1 phase was observed for the free drug while the encapsulated drug exhibited no significant changes. Our results suggest the high toxicity of the formulated drug in contrast to the free DTX on the MCF-7 cell line, minimal blood cell side effects, and no inflammation positioning it as a promising alternative to free docetaxel.

2.
Appl Biochem Biotechnol ; 195(2): 889-904, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36222987

RESUMEN

Lutein is a valuable metabolite widely used in the food, pharmaceutical, cosmetic, and aquaculture industries. Marigold flowers are the most common source of commercial lutein, but cultivation area, weather conditions, and high manpower costs are among the disadvantages of lutein production from marigold flowers. Microalgae are an excellent alternative to plant sources of lutein as they do not have the limitations of plant extraction. Auxenochlorella protothecoides is a promising candidate for commercial production of lutein. In the present research, a genome-scale metabolic model was applied to introduce some strategies to improve lutein production in A. protothecoides. The effective reactions to improve lutein production were determined based on analysis of multiple optimal solutions. The enzymatic regulators of candidate reactions were identified using the BRENDA database. The effect of 13 activators was investigated experimentally. Our results showed that sodium citrate has the greatest effect on lutein production, so it was introduced as the most effective compound for increasing lutein production by A. protothecoides.


Asunto(s)
Chlorophyta , Microalgas , Luteína , Microalgas/genética , Microalgas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA