Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Rheum Dis ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35788494

RESUMEN

OBJECTIVES: S100A9, an alarmin that can form calprotectin (CP) heterodimers with S100A8, is mainly produced by keratinocytes and innate immune cells. The contribution of keratinocyte-derived S100A9 to psoriasis (Ps) and psoriatic arthritis (PsA) was evaluated using mouse models, and the potential usefulness of S100A9 as a Ps/PsA biomarker was assessed in patient samples. METHODS: Conditional S100A9 mice were crossed with DKO* mice, an established psoriasis-like mouse model based on inducible epidermal deletion of c-Jun and JunB to achieve additional epidermal deletion of S100A9 (TKO* mice). Psoriatic skin and joint disease were evaluated in DKO* and TKO* by histology, microCT, RNA and proteomic analyses. Furthermore, S100A9 expression was analysed in skin, serum and synovial fluid samples of patients with Ps and PsA. RESULTS: Compared with DKO* littermates, TKO* mice displayed enhanced skin disease severity, PsA incidence and neutrophil infiltration. Altered epidermal expression of selective pro-inflammatory genes and pathways, increased epidermal phosphorylation of STAT3 and higher circulating TNFα were observed in TKO* mice. In humans, synovial S100A9 levels were higher than the respective serum levels. Importantly, patients with PsA had significantly higher serum concentrations of S100A9, CP, VEGF, IL-6 and TNFα compared with patients with only Ps, but only S100A9 and CP could efficiently discriminate healthy individuals, patients with Ps and patients with PsA. CONCLUSIONS: Keratinocyte-derived S100A9 plays a regulatory role in psoriatic skin and joint disease. In humans, S100A9/CP is a promising marker that could help in identifying patients with Ps at risk of developing PsA.

2.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053909

RESUMEN

The p38 mitogen-activated protein kinase (MAPK) signaling pathway is implicated in cancer biology and has been widely studied over the past two decades as a potential therapeutic target. Most of the biological and pathological implications of p38MAPK signaling are often associated with p38α (MAPK14). Recently, several members of the p38 family, including p38γ and p38δ, have been shown to play a crucial role in several pathologies including cancer. However, the specific role of p38ß (MAPK11) in cancer is still elusive, and further investigation is needed. Here, we summarize what is currently known about the role of p38ß in different types of tumors and its putative implication in cancer therapy. All evidence suggests that p38ß might be a key player in cancer development, and could be an important therapeutic target in several pathologies, including cancer.


Asunto(s)
Susceptibilidad a Enfermedades , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Quinasa 11 Activada por Mitógenos/genética , Familia de Multigenes , Neoplasias/patología , Transducción de Señal
3.
Sensors (Basel) ; 15(9): 24178-90, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26393614

RESUMEN

Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Imagenología Tridimensional/instrumentación , Microscopía/instrumentación , Fijación del Tejido , Animales , Línea Celular Tumoral , Supervivencia Celular , Condrocitos/citología , Fluorescencia , Microscopía Confocal , Células PC12 , Ratas
4.
Aviat Space Environ Med ; 85(8): 798-804, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25199120

RESUMEN

INTRODUCTION: Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology, but also maintain the gene expression characteristics of primary articular chondrocytes. METHODS: Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS: Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 d. DISCUSSION: Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Condrocitos/citología , Animales , Bovinos , Expresión Génica , Microscopía Fluorescente , Rotación
5.
J Biomed Mater Res B Appl Biomater ; 109(12): 2246-2258, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34114736

RESUMEN

There is a need for the development of effective treatments for focal articular cartilage injuries. We previously developed a multiphasic 3D-bioplotted osteochondral scaffold design that can drive site-specific tissue formation when seeded with adipose-derived stem cells (ASC). The objective of this study was to evaluate this scaffold in a large animal model. Osteochondral defects were generated in the trochlear groove of Yucatan minipigs and repaired with scaffolds that either contained or lacked an electrospun tidemark and were either unseeded or seeded with ASC. Implants were monitored via computed tomography (CT) over the course of 4 months of in vivo implantation and compared to both open lesions and autologous explants. ICRS II evaluation indicated that defects with ASC-seeded scaffolds had healing that most closely resembled the aulogous explant. Scaffold-facilitated subchondral bone repair mimicked the structure of native bone tissue, but cartilage matrix staining was not apparent within the scaffold. The open lesions had the highest volumetric infill detected using CT analysis (p < 0.05), but the repair tissue was largely disorganized. The acellular scaffold without a tidemark had significantly more volumetric filling than either the acellular or ASC seeded groups containing a tidemark (p < 0.05), suggesting that the tidemark limited cell infiltration into the cartilage portion of the scaffold. Overall, scaffold groups repaired the defect more successfully than an open lesion but achieved limited repair in the cartilage region. With further optimization, this approach holds potential to treat focal cartilage lesions in a highly personalized manner using a human patient's own ASC cells.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Animales , Cartílago Articular/lesiones , Células Madre , Porcinos , Porcinos Enanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
J Biomed Mater Res B Appl Biomater ; 108(5): 2017-2030, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31880408

RESUMEN

Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either ß-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.


Asunto(s)
Materiales Biocompatibles/química , Condrogénesis/fisiología , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Poliésteres/química , Andamios del Tejido/química , Tejido Adiposo/metabolismo , Huesos , Fosfatos de Calcio/química , Fosfatos de Calcio/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Poliésteres/metabolismo , Impresión Tridimensional , Ingeniería de Tejidos
7.
PLoS One ; 14(10): e0223245, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31584963

RESUMEN

Mechanical loading is essential for the maintenance of musculoskeletal homeostasis. Cartilage has been demonstrated to be highly mechanoresponsive, but the mechanisms by which chondrocytes respond to mechanical stimuli are not clearly understood. The goal of the study was to determine how LRP4, LRP5, and LRP6 within canonical Wnt-signaling are regulated in simulated microgravity and cyclic hydrostatic pressure, and to investigate the potential role of LRP 4/5/6 in cartilage degeneration. Rat chondrosacroma cell (RCS) pellets were stimulated using either cyclic hydrostatic pressure (1Hz, 7.5 MPa, 4hr/day) or simulated microgravity in a rotating wall vessel (RWV) bioreactor (11RPM, 24hr/day). LRP4/5/6 mRNA expression was assessed by RT-qPCR and LRP5 protein expression was determined by fluorescent immunostaining. To further evaluate our in vitro findings in vivo, mice were subjected to hindlimb suspension for 14 days and the femoral heads stained for LRP5 expression. We found that, in vitro, LRP4/5/6 mRNA expression is modulated in a time-dependent manner by mechanical stimulation. Additionally, LRP5 protein expression is upregulated in response to both simulated microgravity and cyclic hydrostatic pressure. LRP5 is also upregulated in vivo in the articular cartilage of hindlimb suspended mice. This is the first study to examine how LRP4/5/6, critical receptors within musculoskeletal biology, respond to mechanical stimulation. Further elucidation of this mechanism could provide significant clinical benefit for the identification of pharmaceutical targets for the maintenance of cartilage health.


Asunto(s)
Condrocitos/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Mecanotransducción Celular/fisiología , Vía de Señalización Wnt/fisiología , Animales , Cartílago Articular/citología , Diferenciación Celular , Línea Celular Tumoral , Suspensión Trasera/fisiología , Presión Hidrostática , Masculino , Ratones , Modelos Animales , Ratas , Estrés Mecánico , Regulación hacia Arriba
8.
EMBO Mol Med ; 11(11): e10697, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31556482

RESUMEN

Psoriasis is a common inflammatory skin disease involving a cross-talk between epidermal and immune cells. The role of specific epidermal stem cell populations, including hair follicle stem cells (HF-SCs) in psoriasis is not well defined. Here, we show reduced expression of c-JUN and JUNB in bulge HF-SCs in patients with scalp psoriasis. Using lineage tracing in mouse models of skin inflammation with inducible deletion of c-Jun and JunB, we found that mutant bulge HF-SCs initiate epidermal hyperplasia and skin inflammation. Mechanistically, thymic stromal lymphopoietin (TSLP) was identified in mutant cells as a paracrine factor stimulating proliferation of neighboring non-mutant epidermal cells, while mutant inter-follicular epidermal (IFE) cells are lost over time. Blocking TSLP in psoriasis-like mice reduced skin inflammation and decreased epidermal proliferation, VEGFα expression, and STAT5 activation. These findings unravel distinct roles of HF-SCs and IFE cells in inflammatory skin disease and provide novel mechanistic insights into epidermal cell interactions in inflammation.


Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Células Epidérmicas/patología , Psoriasis/fisiopatología , Transducción de Señal , Células Madre/patología , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Factores de Transcripción/metabolismo
9.
Cancer Manag Res ; 11: 7721-7737, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496817

RESUMEN

BACKGROUND: Hormone receptor status in human breast cancer cells is a strong indicator of the aggressiveness of a tumor. Triple negative breast cancers (TNBC) are aggressive, difficult to treat, and contribute to high incidences of metastasis by possessing characteristics such as increased tumor cell migration and a large presence of the transmembrane protein, cluster of differentiation 44 (CD44) on the cell membrane. Estrogen receptor-positive (ER+) cells are less aggressive and do not migrate until undergoing an epithelial-mesenchymal transition (EMT). METHODS: The relationship between EMT and CD44 during metastatic events is assessed by observing changes in EMT markers, tumor cell detachment, and migration following cytokine treatment on both parental and CD44 knockdown human breast tumor cells. RESULTS: ER+ T47D and MCF-7 human breast cancer cells treated with OSM demonstrate increased CD44 expression and CD44 cleavage. Conversely, ER- MDA-MB-231 human breast cancer cells do not show a change in CD44 expression nor undergo EMT in the presence of OSM. In ER+ cells, knockdown expression of CD44 by shRNA did not prevent EMT but did change metastatic processes such as cellular detachment and migration. OSM-induced migration was decreased in both ER+ and ER- cells with shCD44 cells compared to control cells, while the promotion of tumor cell detachment by OSM was decreased in ER+ MCF7-shCD44 cells, as compared to control cells. Interestingly, OSM-induced detachment in ER- MDA-MB-231-shCD44 cells that normally don't detach at significant rates. CONCLUSION: OSM promotes both EMT and tumor cell detachment in ER+ breast cancer cells. Yet, CD44 knockdown did not affect OSM-induced EMT in these cells, while independently decreasing OSM-induced cell detachment. These results suggest that regulation of CD44 by OSM is important for at least part of the metastatic cascade in ER+ breast cancer.

10.
Aerosp Med Hum Perform ; 88(4): 377-384, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28518000

RESUMEN

BACKGROUND: Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. METHODS: The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. RESULTS: We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. DISCUSSION: Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.


Asunto(s)
Condrogénesis/fisiología , Presión Hidrostática , Células Madre/citología , Ingeniería de Tejidos , Simulación de Ingravidez , Reactores Biológicos , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Estimulación Física , Soporte de Peso
11.
Biomed Res Int ; 2017: 6956794, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536700

RESUMEN

Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their ability to support viability and proliferation of human adipose derived stem cells (hASC). Cells had increased proliferation and high viability over 21 days on all scaffolds. We further tested implantation of stacked-electrospun scaffold versus combined electrospun/3D scaffold on a cadaveric pig knee model and found that stacked-electrospun scaffold easily delaminated during implantation while the combined scaffold was easier to implant. Our approach combining these two commonly used scaffold fabrication technologies allows for the creation of a scaffold with more close resemblance to heterogeneous tissue architecture, holding great potential for tissue engineering and regenerative medicine applications of osteochondral tissue and other heterogeneous tissues.


Asunto(s)
Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Células Cultivadas , Matriz Extracelular/química , Humanos , Nanofibras/química , Nanofibras/uso terapéutico , Poliésteres/química , Poliésteres/uso terapéutico , Porosidad , Porcinos
12.
Tissue Eng Part A ; 21(17-18): 2323-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26035347

RESUMEN

We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-ß1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach holds great promise for osteochondral tissue engineering using a single cell source (hASC) and single scaffold.


Asunto(s)
Tejido Adiposo/citología , Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Madre/citología , Ingeniería de Tejidos/métodos , Adulto , Calcificación Fisiológica/efectos de los fármacos , Fosfatos de Calcio/farmacología , Células Cultivadas , Espacio Extracelular/química , Regulación de la Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Inmunohistoquímica , Ácido Láctico/farmacología , Poliésteres , Polímeros/farmacología , Células Madre/efectos de los fármacos , Células Madre/ultraestructura , Andamios del Tejido , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA