Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PLoS Pathog ; 19(11): e1011741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956166

RESUMEN

A genomic signature for endosporulation includes a gene coding for a protease, YabG, which in the model organism Bacillus subtilis is involved in assembly of the spore coat. We show that in the human pathogen Clostridioidesm difficile, YabG is critical for the assembly of the coat and exosporium layers of spores. YabG is produced during sporulation under the control of the mother cell-specific regulators σE and σK and associates with the spore surface layers. YabG shows an N-terminal SH3-like domain and a C-terminal domain that resembles single domain response regulators, such as CheY, yet is atypical in that the conserved phosphoryl-acceptor residue is absent. Instead, the CheY-like domain carries residues required for activity, including Cys207 and His161, the homologues of which form a catalytic diad in the B. subtilis protein, and also Asp162. The substitution of any of these residues by Ala, eliminates an auto-proteolytic activity as well as interdomain processing of CspBA, a reaction that releases the CspB protease, required for proper spore germination. An in-frame deletion of yabG or an allele coding for an inactive protein, yabGC207A, both cause misassemby of the coat and exosporium and the formation of spores that are more permeable to lysozyme and impaired in germination and host colonization. Furthermore, we show that YabG is required for the expression of at least two σK-dependent genes, cotA, coding for a coat protein, and cdeM, coding for a key determinant of exosporium assembly. Thus, YabG also impinges upon the genetic program of the mother cell possibly by eliminating a transcriptional repressor. Although this activity has not been described for the B. subtilis protein and most of the YabG substrates vary among sporeformers, the general role of the protease in the assembly of the spore surface is likely to be conserved across evolutionary distance.


Asunto(s)
Clostridioides difficile , Péptido Hidrolasas , Humanos , Péptido Hidrolasas/metabolismo , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Clostridioides , Esporas Bacterianas/metabolismo , Factores de Transcripción/metabolismo , Endopeptidasas/metabolismo , Proteínas Bacterianas/metabolismo , Bacillus subtilis/metabolismo
2.
Chembiochem ; 24(4): e202200602, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36454659

RESUMEN

BP100 is a cationic undecamer peptide with antimicrobial and cell-penetrating activities. The orientation of this amphiphilic α-helix in lipid bilayers was examined under numerous conditions using solid-state 19 F, 15 N and 2 H NMR. At high temperatures in saturated phosphatidylcholine lipids, BP100 lies flat on the membrane surface, as expected. Upon lowering the temperature towards the lipid phase transition, the helix is found to flip into an upright transmembrane orientation. In thin bilayers, this inserted state was stable at low peptide concentration, but thicker membranes required higher peptide concentrations. In the presence of lysolipids, the inserted state prevailed even at high temperature. Molecular dynamics simulations suggest that BP100 monomer insertion can be stabilized by snorkeling lysine side chains. These results demonstrate that even a very short helix like BP100 can span (and thereby penetrate through) a cellular membrane under suitable conditions.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Temperatura , Péptidos/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética
3.
Proc Natl Acad Sci U S A ; 117(11): 5861-5872, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123101

RESUMEN

The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.


Asunto(s)
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Actinas/química , Células Artificiales , Membrana Celular/química , Membrana Celular/metabolismo , Fenómenos Químicos , Biología Computacional , Simulación por Computador , Citoesqueleto/química , Citoesqueleto/metabolismo , Iones/química , Iones/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Electricidad Estática
4.
J Chem Inf Model ; 61(1): 335-346, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33400529

RESUMEN

Nucleotides are structural units relevant not only in nucleic acids but also as substrates or cofactors in key biochemical reactions. The size- and timescales of such nucleotide-protein interactions fall well within the scope of coarse-grained molecular dynamics, which holds promise of important mechanistic insight. However, the lack of specific parameters has prevented accurate coarse-grained simulations of protein interactions with most nucleotide compounds. In this work, we comprehensively develop coarse-grained parameters for key metabolites/cofactors (FAD, FMN, riboflavin, NAD, NADP, ATP, ADP, AMP, and thiamine pyrophosphate) in different oxidation and protonation states as well as for smaller molecules derived from them (among others, nicotinamide, adenosine, adenine, ribose, thiamine, and lumiflavin), summing up a total of 79 different molecules. In line with the Martini parameterization methodology, parameters were tuned to reproduce octanol-water partition coefficients. Given the lack of existing data, we set out to experimentally determine these partition coefficients, developing two methodological approaches, based on 31P-NMR and fluorescence spectroscopy, specifically tailored to the strong hydrophilicity of most of the parameterized compounds. To distinguish the partition of each relevant protonation species, we further potentiometrically characterized the protonation constants of key molecules. This work successfully builds a comprehensive and relevant set of computational models that will boost the biochemical application of coarse-grained simulations. It does so based on the measurement of partition and acid-base physicochemical data that, in turn, covers important gaps in nucleotide characterization.


Asunto(s)
Simulación de Dinámica Molecular , Nucleótidos , Interacciones Hidrofóbicas e Hidrofílicas , Octanoles , Agua
5.
Biochim Biophys Acta Biomembr ; 1860(6): 1292-1300, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29501607

RESUMEN

Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling.


Asunto(s)
Membrana Celular/química , Proteínas Fúngicas/química , Proteínas de la Membrana/química , Penicillium chrysogenum/enzimología , Peroxinas/química , Sustitución de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación Missense , Penicillium chrysogenum/genética , Fragmentos de Péptidos/química , Peroxinas/genética , Peroxinas/fisiología , Peroxisomas/química , Agregado de Proteínas , Conformación Proteica
6.
Hum Mol Genet ; 25(13): 2728-2737, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27260403

RESUMEN

Spinocerebellar ataxia type 23 (SCA23) is caused by missense mutations in prodynorphin, encoding the precursor protein for the opioid neuropeptides α-neoendorphin, Dynorphin (Dyn) A and Dyn B, leading to neurotoxic elevated mutant Dyn A levels. Dyn A acts on opioid receptors to reduce pain in the spinal cord, but its cerebellar function remains largely unknown. Increased concentration of or prolonged exposure to Dyn A is neurotoxic and these deleterious effects are very likely caused by an N-methyl-d-aspartate-mediated non-opioid mechanism as Dyn A peptides were shown to bind NMDA receptors and potentiate their glutamate-evoked currents. In the present study, we investigated the cellular mechanisms underlying SCA23-mutant Dyn A neurotoxicity. We show that SCA23 mutations in the Dyn A-coding region disrupted peptide secondary structure leading to a loss of the N-terminal α-helix associated with decreased κ-opioid receptor affinity. Additionally, the altered secondary structure led to increased peptide stability of R6W and R9C Dyn A, as these peptides showed marked degradation resistance, which coincided with decreased peptide solubility. Notably, L5S Dyn A displayed increased degradation and no aggregation. R6W and wt Dyn A peptides were most toxic to primary cerebellar neurons. For R6W Dyn A, this is likely because of a switch from opioid to NMDA- receptor signalling, while for wt Dyn A, this switch was not observed. We propose that the pathology of SCA23 results from converging mechanisms of loss of opioid-mediated neuroprotection and NMDA-mediated excitotoxicity.


Asunto(s)
Dinorfinas/metabolismo , Degeneraciones Espinocerebelosas/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Cultivo de Célula , Simulación por Computador , Dinorfinas/fisiología , Endorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Neurotoxinas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Médula Espinal/metabolismo , Degeneraciones Espinocerebelosas/genética
7.
Biophys J ; 113(12): 2669-2681, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262360

RESUMEN

The thylakoid membrane has a unique lipid composition, consisting mostly of galactolipids. These thylakoid lipids have important roles in photosynthesis. Here, we investigate to what extent these lipids bind specifically to the Photosystem II complex. To this end, we performed coarse-grain MD simulations of the Photosystem II complex embedded in a thylakoid membrane with realistic composition. Based on >85 µs simulation time, we find that monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol lipids are enriched in the annular shell around the protein, and form distinct binding sites. From the analysis of residue contacts, we conclude that electrostatic interactions play an important role in stabilizing these binding sites. Furthermore, we find that chlorophyll a has a prevalent role in the coordination of the lipids. In addition, we observe lipids to diffuse in and out of the plastoquinone exchange cavities, allowing exchange of cocrystallized lipids with the bulk membrane and suggesting a more open nature of the plastoquinone exchange cavity. Together, our data provide a wealth of information on protein-lipid interactions for a key protein in photosynthesis.


Asunto(s)
Lípidos de la Membrana/metabolismo , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Sitios de Unión , Glicerol/metabolismo , Complejo de Proteína del Fotosistema II/química , Unión Proteica , Conformación Proteica
8.
J Am Chem Soc ; 139(7): 2664-2671, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28122455

RESUMEN

The mechanosensitive channels of large conductance (MscL) are bacterial membrane proteins that serve as last resort emergency release valves in case of severe osmotic downshock. Sensing bilayer tension, MscL channels are sensitive to changes in the bilayer environment and are, therefore, an ideal test case for exploring membrane protein coupling. Here, we use high-throughput coarse-grained molecular dynamics simulations to characterize MscL gating kinetics in different bilayer environments under the influence of alcohols. We performed over five hundred simulations to obtain sufficient statistics to reveal the subtle effects of changes in the membrane environment on MscL gating. MscL opening times were found to increase with the addition of the straight-chain alcohols ethanol, octanol, and to some extent dodecanol but not with hexadecanol. Increasing concentration of octanol increased the impeding effect, but only up to 10-20 mol %. Our in silico predictions were experimentally confirmed using reconstituted MscL in a liposomal fluorescent efflux assay. Our combined data reveal that the effect of alcohols on MscL gating arises not through specific binding sites but through a combination of the alcohol-induced changes to a number of bilayer properties and their alteration of the MscL-bilayer interface. Our work provides a key example of how extensive molecular simulations can be used to predict the functional modification of membrane proteins by subtle changes in their bilayer environment.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/química , Canales Iónicos/fisiología , Simulación de Dinámica Molecular , Proteínas Bacterianas/fisiología , Membrana Celular/fisiología , Etanol , Activación del Canal Iónico/fisiología , Fenómenos Mecánicos , Octanoles
9.
J Chem Phys ; 142(24): 244118, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26133421

RESUMEN

Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties.


Asunto(s)
Modelos Moleculares , Agua/química , Conformación Molecular , Solventes/química , Electricidad Estática
10.
Biochim Biophys Acta ; 1828(11): 2524-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23756777

RESUMEN

Bacteriocin AS-48 is a membrane-interacting peptide that acts as a broad-spectrum antimicrobial against Gram-positive and Gram-negative bacteria. Prior Nuclear Magnetic Resonance experiments and the high resolution crystal structure of AS-48 have suggested a mechanism for the molecular activity of AS-48 whereby the peptide undergoes transition from a water-soluble to a membrane-bound state upon membrane binding. To help interpret experimental results, we here simulate the molecular dynamics of this binding mechanism at the coarse-grained level. By simulating the self-assembly of the peptide, we predict induction by the bacteriocin of different pore types consistent with a "leaky slit" model.


Asunto(s)
Bacteriocinas/metabolismo , Membranas Artificiales , Bacteriocinas/química , Dimerización , Membrana Dobles de Lípidos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Difracción de Rayos X
11.
J Am Chem Soc ; 136(41): 14554-9, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25229711

RESUMEN

The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.


Asunto(s)
Membrana Celular/química , Lípidos/química , Simulación de Dinámica Molecular
12.
Nat Commun ; 15(1): 4700, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830851

RESUMEN

BAX and BAK are proapoptotic members of the BCL2 family that directly mediate mitochondrial outer membrane permeabilition (MOMP), a central step in apoptosis execution. However, the molecular architecture of the mitochondrial apoptotic pore remains a key open question and especially little is known about the contribution of lipids to MOMP. By performing a comparative lipidomics analysis of the proximal membrane environment of BAK isolated in lipid nanodiscs, we find a significant enrichment of unsaturated species nearby BAK and BAX in apoptotic conditions. We then demonstrate that unsaturated lipids promote BAX pore activity in model membranes, isolated mitochondria and cellular systems, which is further supported by molecular dynamics simulations. Accordingly, the fatty acid desaturase FADS2 not only enhances apoptosis sensitivity, but also the activation of the cGAS/STING pathway downstream mtDNA release. The correlation of FADS2 levels with the sensitization to apoptosis of different lung and kidney cancer cell lines by co-treatment with unsaturated fatty acids supports the relevance of our findings. Altogether, our work provides an insight on how local lipid environment affects BAX and BAK function during apoptosis.


Asunto(s)
Apoptosis , Membranas Mitocondriales , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína X Asociada a bcl-2 , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Humanos , Membranas Mitocondriales/metabolismo , Simulación de Dinámica Molecular , Mitocondrias/metabolismo , Línea Celular Tumoral , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología , Animales
13.
Pharmaceutics ; 15(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678790

RESUMEN

Proteins are inherently unstable, which limits their use as therapeutic agents. However, the use of biocompatible cosolvents or surfactants can help to circumvent this problem through the stabilization of intramolecular and solvent-mediated interactions. Ionic liquids (ILs) have been known to act as cosolvents or surface-active compounds. In the presence of proteins, ILs can have a beneficial effect on their refolding, shelf life, stability, and enzymatic activities. In the work described herein, we used small-angle X-ray scattering (SAXS) to monitor the aggregation of different concentrations of ILs with protein models, lysozyme (Lys) and bovine serum albumin (BSA), and fluorescence microscopy to assess micelle formation of fluorinated ILs (FILs) with Lys. Furthermore, coarse-grained molecular dynamics (CG-MD) simulations provided a better understanding of Lys-FIL interactions. The results showed that the proteins maintain their globular structures in the presence of FILs, with signs of partial unfolding for Lys and compaction for BSA with increased flexibility at higher FIL concentrations. Lys was encapsulated by FIL, thus reinforcing the potential of ILs to be used in the formulation of protein-based pharmaceuticals.

14.
iScience ; 26(7): 107004, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37416464

RESUMEN

Most antimicrobial peptides (AMPs) exert their microbicidal activity through membrane permeabilization. The designed AMP EcDBS1R4 has a cryptic mechanism of action involving the membrane hyperpolarization of Escherichia coli, suggesting that EcDBS1R4 may hinder processes involved in membrane potential dissipation. We show that EcDBS1R4 can sequester cardiolipin, a phospholipid that interacts with several respiratory complexes of E. coli. Among these, F1FO ATP synthase uses membrane potential to fuel ATP synthesis. We found that EcDBS1R4 can modulate the activity of ATP synthase upon partition to membranes containing cardiolipin. Molecular dynamics simulations suggest that EcDBS1R4 alters the membrane environment of the transmembrane FO motor, impairing cardiolipin interactions with the cytoplasmic face of the peripheral stalk that binds the catalytic F1 domain to the FO domain. The proposed mechanism of action, targeting membrane protein function through lipid reorganization may open new venues of research on the mode of action and design of other AMPs.

15.
Adv Sci (Weinh) ; 10(31): e2301606, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705095

RESUMEN

ATP synthases are proteins that catalyse the formation of ATP through the rotatory movement of their membrane-spanning subunit. In mitochondria, ATP synthases are found to arrange as dimers at the high-curved edges of cristae. Here, a direct link is explored between the rotatory movement of ATP synthases and their preference for curved membranes. An active curvature sorting of ATP synthases in lipid nanotubes pulled from giant vesicles is found. Coarse-grained simulations confirm the curvature-seeking behaviour of rotating ATP synthases, promoting reversible and frequent protein-protein contacts. The formation of transient protein dimers relies on the membrane-mediated attractive interaction of the order of 1.5 kB T produced by a hydrophobic mismatch upon protein rotation. Transient dimers are sustained by a conic-like arrangement characterized by a wedge angle of θ ≈ 50°, producing a dynamic coupling between protein shape and membrane curvature. The results suggest a new role of the rotational movement of ATP synthases for their dynamic self-assembly in biological membranes.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Rotación , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Adenosina Trifosfato/metabolismo
16.
iScience ; 26(12): 108309, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025784

RESUMEN

Rhodopsin-1 (Rh1), the main photosensitive protein of Drosophila, is a seven-transmembrane domain protein, which is inserted co-translationally in the endoplasmic reticulum (ER) membrane. Biogenesis of Rh1 occurs in the ER, where various chaperones interact with Rh1 to aid in its folding and subsequent transport from the ER to the rhabdomere, the light-sensing organelle of the photoreceptors. Xport-A has been proposed as a chaperone/transport factor for Rh1, but the exact molecular mechanism for Xport-A activity upon Rh1 is unknown. Here, we propose a model where Xport-A functions as a chaperone during the biogenesis of Rh1 in the ER by stabilizing the first five transmembrane domains (TMDs) of Rh1.

17.
J Chem Theory Comput ; 19(20): 7387-7404, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37796943

RESUMEN

Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol. Here, we describe the development and validation of a Martini 3 cholesterol model, addressing issues related to its bonded setup, shape, volume, and hydrophobicity. The proposed model mitigates some limitations of its Martini 2 predecessor while maintaining or improving the overall behavior.


Asunto(s)
Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Colesterol
18.
Methods Mol Biol ; 2405: 137-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298812

RESUMEN

The amphipathic α-helix is a common motif for peptide adsorption to membranes. Many physiologically relevant events involving membrane-adsorbed peptides occur over time and size scales readily accessible to coarse-grain molecular dynamics simulations. This methodological suitability, however, comes with a number of pitfalls. Here, I exemplify a multi-step adsorption equilibration procedure on the antimicrobial peptide Magainin 2. It involves careful control of peptide freedom to promote optimal membrane adsorption before other interactions are allowed. This shortens preparation times prior to production simulations while avoiding divergence into unrealistic or artifactual configurations.


Asunto(s)
Membrana Dobles de Lípidos , Péptidos , Membrana Dobles de Lípidos/química , Membranas , Simulación de Dinámica Molecular , Péptidos/química , Estructuras de las Plantas
19.
J Chem Theory Comput ; 18(1): 357-373, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-34962393

RESUMEN

Phosphoinositides are a family of membrane phospholipids that play crucial roles in membrane regulatory events. As such, these lipids are often a key part of molecular dynamics simulation studies of biological membranes, in particular of those employing coarse-grain models because of the potential long times and sizes of the involved membrane processes. Version 3 of the widely used Martini coarse-grain force field has been recently published, greatly refining many aspects of biomolecular interactions. In order to properly use it for lipid membrane simulations with phosphoinositides, we put forth the Martini 3-specific parameterization of inositol, phosphatidylinositol, and seven physiologically relevant phosphorylated derivatives of phosphatidylinositol. Compared to parameterizations for earlier Martini versions, focus was put on a more accurate reproduction of the behavior seen in both atomistic simulations and experimental studies, including the signaling-relevant phosphoinositide interaction with divalent cations. The models that we develop improve upon the conformational dynamics of phosphoinositides in the Martini force field and provide stable topologies at typical Martini time steps. They are able to reproduce experimentally known protein-binding poses as well as phosphoinositide aggregation tendencies. The latter was tested both in the presence and absence of calcium and included correct behavior of PI(4,5)P2 calcium-induced clusters, which can be of relevance for regulation.


Asunto(s)
Simulación de Dinámica Molecular , Fosfolípidos
20.
Front Med Technol ; 4: 1009451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277437

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has killed over 6 million people and is having a devastating social and economic impact around the world. The rise of new variants of concern (VOCs) represents a difficult challenge due to the loss of vaccine and natural immunity, as well as increased transmissibility. All VOCs contain mutations in the spike glycoprotein, which mediates fusion between the viral and host cell membranes. The spike glycoprotein binds to angiotensin-converting enzyme 2 (ACE2) via its receptor binding domain (RBD) initiating the infection process. Attempting to understand the effect of RBD mutations in VOCs, a lot of attention has been given to the RBD-ACE2 interaction. However, this type of analysis ignores more indirect effects, such as the conformational dynamics of the RBD itself. Observing that some mutations occur in residues that are not in direct contact with ACE2, we hypothesized that they could affect the RBD conformational dynamics. To test this, we performed long atomistic (AA) molecular dynamics (MD) simulations to investigate the structural dynamics of wt RBD, and that of four VOCs (Alpha, Beta, Delta, and Omicron). Our results show that the wt RBD presents two distinct conformations: an "open" conformation where it is free to bind ACE2; and a "closed" conformation, where the RBM ridge blocks the binding surface. The Alpha and Beta variants shift the open/closed equilibrium towards the open conformation by roughly 20%, likely increasing ACE2 binding affinity. Simulations of the Delta and Omicron variants showed extreme results, with the closed conformation being rarely observed. The Delta variant also differed substantially from the other variants, alternating between the open conformation and an alternative "reversed" one, with a significantly changed orientation of the RBM ridge. This alternate conformation could provide a fitness advantage due to increased availability for ACE2 binding, and by aiding antibody escape through epitope occlusion. These results support the hypothesis that VOCs, and particularly the Omicron and Delta variants, impact RBD conformational dynamics in a direction that promotes efficient binding to ACE2 and, in the case of Delta, may assist antibody escape.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA