Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Strahlenther Onkol ; 200(2): 151-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37889301

RESUMEN

PURPOSE: Modern digital teaching formats have become increasingly important in recent years, in part due to the COVID-19 pandemic. In January 2021, an online-based webinar series was established by the German Society for Radiation Oncology (DEGRO) and the young DEGRO (yDEGRO) working group. In the monthly 120-minute courses, selected lecturers teach curricular content as preparation for the board certification exam for radiation oncology. METHODS: The evaluation of the 24 courses between 01.2021 and 12.2022 was performed using a standardized questionnaire with 21 items (recording epidemiological characteristics of the participants, didactic quality, content quality). A Likert scale (1-4) was used in combination with binary and open-ended questions. RESULTS: A combined total of 4200 individuals (1952 in 2021 and 2248 in 2022) registered for the courses, and out of those, 934 participants (455 in 2021 and 479 in 2022) later provided evaluations for the respective courses (36% residents, 35% specialists, 21% medical technicians for radiology [MTR], 8% medical physics experts [MPE]). After 2 years, 74% of the DEGRO Academy curriculum topics were covered by the monthly webinars. The overall rating by participants was positive (mean 2021: 1.33 and 2022: 1.25) and exceeded the curriculum offered at each site for 70% of participants. Case-based learning was identified as a particularly well-rated method. CONCLUSION: The DEGRO webinar expands the digital teaching opportunities in radiation oncology. The consistently high number of participants confirms the need for high-quality teaching and underlines the advantages of e­learning methods. Optimization opportunities were identified through reevaluation of feedback from course participants. In its design as a teaching format for a multiprofessional audience, the webinar series could be used as a practice model of online teaching for other disciplines.


Asunto(s)
COVID-19 , Oncología por Radiación , Humanos , Oncología por Radiación/educación , Pandemias , Curriculum , COVID-19/epidemiología , Sociedades Médicas
2.
Acta Radiol ; : 2841851241263066, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033391

RESUMEN

Spinal bone lesions encompass a wide array of pathologies, spanning from benign abnormalities to aggressive malignancies, such as diffusely localized metastases. Early detection and accurate differentiation of the underlying diseases is crucial for every patient's clinical treatment and outcome, with radiological imaging being a core element in the diagnostic pathway. Across numerous pathologies and imaging techniques, deep learning (DL) models are progressively considered a valuable resource in the clinical setting. This review describes not only the diagnostic performance of these models and the differing approaches in the field of spinal bone malignancy recognition, but also the lack of standardized methodology and reporting that we believe is currently hampering this newly founded area of research. In line with their established and reliable role in lesion detection, this publication focuses on both computed tomography and magnetic resonance imaging, as well as various derivative modalities (i.e. SPECT). After conducting a systematic literature search and subsequent analysis for applicability and quality using a modified QUADAS-2 scoring system, we confirmed that most of the 14 identified studies were plagued by major limitations, such as insufficient reporting of model statistics and data acquisition, a lacking external validation dataset, and potentially biased annotation. Although we experienced these limitations, we nonetheless conclude that the potential of these methods shines through in the presented results. These findings underline the need for more stringent quality controls in DL studies, as well as model development to afford increased insight and progress in this promising novel field.

3.
Nat Commun ; 13(1): 5555, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138009

RESUMEN

Scarring is a lifelong consequence of skin injury, with scar stiffness and poor appearance presenting physical and psychological barriers to a return to normal life. Lysyl oxidases are a family of enzymes that play a critical role in scar formation and maintenance. Lysyl oxidases stabilize the main component of scar tissue, collagen, and drive scar stiffness and appearance. Here we describe the development and characterisation of an irreversible lysyl oxidase inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily penetrating the skin when applied as a cream and abolishing lysyl oxidase activity. In murine models of injury and fibrosis, topical application reduces collagen deposition and cross-linking. Topical application of PXS-6302 after injury also significantly improves scar appearance without reducing tissue strength in porcine injury models. PXS-6302 therefore represents a promising therapeutic to ameliorate scar formation, with potentially broader applications in other fibrotic diseases.


Asunto(s)
Cicatriz , Proteína-Lisina 6-Oxidasa , Animales , Cicatriz/tratamiento farmacológico , Colágeno , Fibrosis , Ratones , Piel , Porcinos
4.
Curr Opin Neurobiol ; 61: 1-9, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31812830

RESUMEN

The gut microbiome - the largest reservoir of microorganisms of the human body - is emerging as an important player in neurodevelopment and ageing as well as in brain diseases including stroke, Alzheimer's disease and Parkinson's disease. The growing knowledge on mediators and triggered pathways has advanced our understanding of the interactions along the gut-brain axis. Gut bacteria produce neuroactive compounds and can modulate neuronal function, plasticity and behavior. Furthermore, intestinal microorganisms impact the host's metabolism and immune status which in turn affect neuronal pathways in the enteric and central nervous systems. Here, we discuss the recent insights from human studies and animal models on the bi-directional communication along the microbiome-gut-brain axis in both acute and chronic brain diseases.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Parkinson , Accidente Cerebrovascular , Animales , Encéfalo , Sistema Nervioso Central , Humanos
5.
Genome Med ; 12(1): 105, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239103

RESUMEN

BACKGROUND: DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS: We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS: DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS: There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.


Asunto(s)
Índice de Masa Corporal , Metilación de ADN , Epigénesis Genética , Obesidad/genética , Parto , Adolescente , Niño , Preescolar , Islas de CpG , Estudios Transversales , Epigenoma , Femenino , Sangre Fetal , Humanos , Masculino , Obesidad Infantil/genética , Embarazo
6.
BMC Proc ; 12(Suppl 9): 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30263042

RESUMEN

GAW20 provided a platform for developing and evaluating statistical methods to analyze human lipid-related phenotypes, DNA methylation, and single-nucleotide markers in a study involving a pharmaceutical intervention. In this article, we present an overview of the data sets and the contributions analyzing these data. The data, donated by the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) investigators, included data from 188 families (N = 1105) which included genome-wide DNA methylation data before and after a 3-week treatment with fenofibrate, single-nucleotide polymorphisms, metabolic syndrome components before and after treatment, and a variety of covariates. The contributions from individual research groups were extensively discussed prior, during, and after the Workshop in groups based on discussion themes, before being submitted for publication.

8.
EBioMedicine ; 19: 60-72, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28473239

RESUMEN

Experimental studies show a substantial contribution of early life environment to obesity risk through epigenetic processes. We examined inter-individual DNA methylation differences in human birth tissues associated with child's adiposity. We identified a novel association between the level of CpG methylation at birth within the promoter of the long non-coding RNA ANRIL (encoded at CDKN2A) and childhood adiposity at age 6-years. An association between ANRIL methylation and adiposity was also observed in three additional populations; in birth tissues from ethnically diverse neonates, in peripheral blood from adolescents, and in adipose tissue from adults. Additionally, CpG methylation was associated with ANRIL expression in vivo, and CpG mutagenesis in vitro inhibited ANRIL promoter activity. Furthermore, CpG methylation enhanced binding to an Estrogen Response Element within the ANRIL promoter. Our findings demonstrate that perinatal methylation at loci relevant to gene function may be a robust marker of later adiposity, providing substantial support for epigenetic processes in mediating long-term consequences of early life environment on human health.


Asunto(s)
Adiposidad/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Adolescente , Adulto , Anciano , Biomarcadores , Línea Celular Tumoral , Niño , Islas de CpG , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Metilación de ADN , Epigénesis Genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Obesidad/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA