Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4574, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931777

RESUMEN

The phase transition between galaxies and quasars is often identified with the rare population of hyper-luminous, hot dust-obscured galaxies. Galaxy formation models predict these systems to grow via mergers, that can deliver large amounts of gas toward their centers, induce intense bursts of star formation and feed their supermassive black holes. Here we report the detection of 24 galaxies emitting Lyman-α emission on projected physical scales of about 400 kpc around the hyper-luminous hot dust-obscured galaxy W0410-0913, at redshift z = 3.631, using Very Large Telescope observations. While this indicates that W0410-0913 evolves in a very dense environment, we do not find clear signs of mergers that could sustain its growth. Data suggest that if mergers occurred, as models expect, these would involve less massive satellites, with only a moderate impact on the internal interstellar medium of W0410-0913, which is sustained by a rotationally-supported fast-rotating molecular disk, as Atacama Large Millimeter Array observations suggest.

2.
Astrophys J ; 528(2): L77-L80, 2000 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-10600622

RESUMEN

The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated because of momentum and energy fed back by the supernovae which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z approximately 1.5 in forthcoming deep surveys from Chandra and X-Ray Multimirror Mission, especially in case the star formation rate is high at such and earlier redshifts. These X-ray emissions constitute a necessary counterpart and will provide a much-wanted probe of the star formation process itself (in particular, of the supernova feedback) to parallel and complement the currently debated data from optical and IR observations of the young stars.

3.
Astrophys J ; 530(2): L73-L76, 2000 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-10655168

RESUMEN

The intrinsic sizes of the field galaxies with I-19) galaxies is skewed with respect to the CDM predictions, and an excess of small-size disks (Rd<2 kpc) is already present at z approximately 0.5. The excess persists up to z approximately 3 and involves brighter galaxies. Such an excess may be reduced if luminosity-dependent effects, like starburst activity in interacting galaxies, are included in the physical mechanisms governing the star formation history in CDM models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA