Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 601(7892): 252-256, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912116

RESUMEN

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.


Asunto(s)
Metagenoma , Metagenómica , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Ecosistema , Humanos , Metagenoma/genética
2.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897342

RESUMEN

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Asunto(s)
Bases de Datos Factuales , Metagenoma , Microbiota , Metagenómica , Microbiota/genética
3.
Nat Methods ; 19(4): 429-440, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396482

RESUMEN

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Asunto(s)
Metagenoma , Metagenómica , Archaea/genética , Metagenómica/métodos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Programas Informáticos
4.
Nucleic Acids Res ; 51(D1): D389-D394, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399505

RESUMEN

The eggNOG (evolutionary gene genealogy Non-supervised Orthologous Groups) database is a bioinformatics resource providing orthology data and comprehensive functional information for organisms from all domains of life. Here, we present a major update of the database and website (version 6.0), which increases the number of covered organisms to 12 535 reference species, expands functional annotations, and implements new functionality. In total, eggNOG 6.0 provides a hierarchy of over 17M orthologous groups (OGs) computed at 1601 taxonomic levels, spanning 10 756 bacterial, 457 archaeal and 1322 eukaryotic organisms. OGs have been thoroughly annotated using recent knowledge from functional databases, including KEGG, Gene Ontology, UniProtKB, BiGG, CAZy, CARD, PFAM and SMART. eggNOG also offers phylogenetic trees for all OGs, maximising utility and versatility for end users while allowing researchers to investigate the evolutionary history of speciation and duplication events as well as the phylogenetic distribution of functional terms within each OG. Furthermore, the eggNOG 6.0 website contains new functionality to mine orthology and functional data with ease, including the possibility of generating phylogenetic profiles for multiple OGs across species or identifying single-copy OGs at custom taxonomic levels. eggNOG 6.0 is available at http://eggnog6.embl.de.


Asunto(s)
Bases de Datos Genéticas , Genómica , Filogenia , Biología Computacional , Eucariontes/genética
5.
Nucleic Acids Res ; 51(D1): D760-D766, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36408900

RESUMEN

The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/.


Asunto(s)
Genoma , Células Procariotas , Bases de Datos Genéticas , Genómica , Anotación de Secuencia Molecular , Bacterias/clasificación , Bacterias/genética
6.
PLoS Med ; 20(6): e1004235, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37368871

RESUMEN

BACKGROUND: Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. METHODS AND FINDINGS: In this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations. CONCLUSION: In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.


Asunto(s)
Antibacterianos , Microbioma Gastrointestinal , Lactante , Niño , Humanos , Preescolar , Antibacterianos/efectos adversos , Países en Desarrollo , Microbioma Gastrointestinal/genética , Azitromicina , Farmacorresistencia Microbiana/genética
7.
Nucleic Acids Res ; 48(D1): D621-D625, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31647096

RESUMEN

Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.


Asunto(s)
Bases de Datos Genéticas , Genoma Arqueal , Genoma Bacteriano , Genómica , Biología Computacional/métodos , Ecosistema , Internet , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Células Procariotas , Reproducibilidad de los Resultados , Programas Informáticos
8.
Proc Natl Acad Sci U S A ; 116(41): 20574-20583, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548428

RESUMEN

Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.


Asunto(s)
Evolución Biológica , Eucariontes/virología , Virus Gigantes/genética , Phycodnaviridae/genética , Rodopsina/metabolismo , Agua de Mar/virología , Proteínas Virales/metabolismo , Ecosistema , Genoma Viral , Virus Gigantes/clasificación , Metagenómica , Océanos y Mares , Phycodnaviridae/clasificación , Filogenia , Protones , Rodopsina/química , Rodopsina/genética , Proteínas Virales/química , Proteínas Virales/genética
9.
Nucleic Acids Res ; 47(D1): D309-D314, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30418610

RESUMEN

eggNOG is a public database of orthology relationships, gene evolutionary histories and functional annotations. Here, we present version 5.0, featuring a major update of the underlying genome sets, which have been expanded to 4445 representative bacteria and 168 archaea derived from 25 038 genomes, as well as 477 eukaryotic organisms and 2502 viral proteomes that were selected for diversity and filtered by genome quality. In total, 4.4M orthologous groups (OGs) distributed across 379 taxonomic levels were computed together with their associated sequence alignments, phylogenies, HMM models and functional descriptors. Precomputed evolutionary analysis provides fine-grained resolution of duplication/speciation events within each OG. Our benchmarks show that, despite doubling the amount of genomes, the quality of orthology assignments and functional annotations (80% coverage) has persisted without significant changes across this update. Finally, we improved eggNOG online services for fast functional annotation and orthology prediction of custom genomics or metagenomics datasets. All precomputed data are publicly available for downloading or via API queries at http://eggnog.embl.de.


Asunto(s)
Secuencia Conservada , Bases de Datos Genéticas , Evolución Molecular , Filogenia , Homología de Secuencia , Animales , Clasificación , Eucariontes/genética , Duplicación de Gen , Ontología de Genes , Genes Virales , Genoma , Humanos , Anotación de Secuencia Molecular , Proteoma , Alineación de Secuencia , Relación Estructura-Actividad
10.
Proc Natl Acad Sci U S A ; 114(43): 11446-11451, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073070

RESUMEN

Viruses are fundamental components of marine microbial communities that significantly influence oceanic productivity, biogeochemistry, and ecosystem processes. Despite their importance, the temporal activities and dynamics of viral assemblages in natural settings remain largely unexplored. Here we report the transcriptional activities and variability of dominant dsDNA viruses in the open ocean's euphotic zone over daily and seasonal timescales. While dsDNA viruses exhibited some fluctuation in abundance in both cellular and viral size fractions, the viral assemblage was remarkably stable, with the most abundant viral types persisting over many days. More extended time series indicated that long-term persistence (>1 y) was the rule for most dsDNA viruses observed, suggesting that both core viral genomes as well as viral community structure were conserved over interannual periods. Viral gene transcription in host cell assemblages revealed diel cycling among many different viral types. Most notably, an afternoon peak in cyanophage transcriptional activity coincided with a peak in Prochlorococcus DNA replication, indicating coordinated diurnal coupling of virus and host reproduction. In aggregate, our analyses suggested a tightly synchronized diel coupling of viral and cellular replication cycles in both photoautotrophic and heterotrophic bacterial hosts. A surprising consequence of these findings is that diel cycles in the ocean's photic zone appear to be universal organizing principles that shape ecosystem dynamics, ecological interactions, and biogeochemical cycling of both cellular and acellular community components.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Prochlorococcus/fisiología , Prochlorococcus/virología , Ritmo Circadiano , ADN Bacteriano/genética , Regulación Viral de la Expresión Génica , Océanos y Mares , ARN Bacteriano/genética , Replicación Viral , Microbiología del Agua
11.
Nature ; 493(7430): 45-50, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23222524

RESUMEN

Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short insertions/deletions, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake.


Asunto(s)
Variación Genética/genética , Intestinos/microbiología , Metagenoma/genética , Europa (Continente) , Heces/microbiología , Genoma Bacteriano/genética , Genotipo , Mapeo Geográfico , Humanos , América del Norte , Polimorfismo de Nucleótido Simple/genética , Estándares de Referencia , Factores de Tiempo
12.
Nucleic Acids Res ; 45(D1): D529-D534, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053165

RESUMEN

The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de.


Asunto(s)
Biología Computacional/métodos , Código de Barras del ADN Taxonómico/métodos , Genoma , Genómica/métodos , Células Procariotas , Bases de Datos Genéticas , Anotación de Secuencia Molecular , Navegador Web
13.
Proc Natl Acad Sci U S A ; 113(50): 14237-14242, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911777

RESUMEN

Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle.


Asunto(s)
Hierro/metabolismo , Agua de Mar/análisis , Agua de Mar/microbiología , Sideróforos/metabolismo , Adaptación Fisiológica , Disponibilidad Biológica , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genes Bacterianos , Hierro/farmacocinética , Ligandos , Océano Pacífico , Filogenia , Microbiología del Agua
14.
Nucleic Acids Res ; 44(3): 1192-202, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26773059

RESUMEN

We developed a comprehensive resource for the genome-reduced bacterium Mycoplasma pneumoniae comprising 1748 consistently generated '-omics' data sets, and used it to quantify the power of antisense non-coding RNAs (ncRNAs), lysine acetylation, and protein phosphorylation in predicting protein abundance (11%, 24% and 8%, respectively). These factors taken together are four times more predictive of the proteome abundance than of mRNA abundance. In bacteria, post-translational modifications (PTMs) and ncRNA transcription were both found to increase with decreasing genomic GC-content and genome size. Thus, the evolutionary forces constraining genome size and GC-content modify the relative contributions of the different regulatory layers to proteome homeostasis, and impact more genomic and genetic features than previously appreciated. Indeed, these scaling principles will enable us to develop more informed approaches when engineering minimal synthetic genomes.


Asunto(s)
Genoma Bacteriano/genética , Genómica/métodos , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Análisis por Conglomerados , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Regulación de la Expresión Génica , Genómica/estadística & datos numéricos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo , Proteómica/estadística & datos numéricos , ARN no Traducido/genética , Biología de Sistemas/métodos , Biología de Sistemas/estadística & datos numéricos
15.
Nucleic Acids Res ; 44(D1): D286-93, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26582926

RESUMEN

eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.


Asunto(s)
Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Análisis de Secuencia de Proteína , Algoritmos , Proteínas Arqueales/química , Proteínas Bacterianas/química , Eucariontes , Filogenia , Proteoma/química , Proteínas Virales/química
16.
Proc Natl Acad Sci U S A ; 112(20): 6449-54, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941371

RESUMEN

Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Consorcios Microbianos/fisiología , Interacciones Microbianas/fisiología , Modelos Biológicos , Simbiosis , Consorcios Microbianos/genética , Filogenia , Especificidad de la Especie , Estadísticas no Paramétricas
17.
Nature ; 473(7346): 174-80, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21508958

RESUMEN

Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.


Asunto(s)
Bacterias/clasificación , Intestinos/microbiología , Metagenoma , Bacterias/genética , Técnicas de Tipificación Bacteriana , Biodiversidad , Biomarcadores/análisis , Europa (Continente) , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Filogenia
18.
Genome Res ; 23(7): 1163-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568836

RESUMEN

Despite increasing concerns over inappropriate use of antibiotics in medicine and food production, population-level resistance transfer into the human gut microbiota has not been demonstrated beyond individual case studies. To determine the "antibiotic resistance potential" for entire microbial communities, we employ metagenomic data and quantify the totality of known resistance genes in each community (its resistome) for 68 classes and subclasses of antibiotics. In 252 fecal metagenomes from three countries, we show that the most abundant resistance determinants are those for antibiotics also used in animals and for antibiotics that have been available longer. Resistance genes are also more abundant in samples from Spain, Italy, and France than from Denmark, the United States, or Japan. Where comparable country-level data on antibiotic use in both humans and animals are available, differences in these statistics match the observed resistance potential differences. The results are robust over time as the antibiotic resistance determinants of individuals persist in the human gut flora for at least a year.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Tracto Gastrointestinal/microbiología , Metagenoma/efectos de los fármacos , Metagenoma/genética , Animales , Dinamarca , Francia , Humanos , Italia , Japón , Metagenómica , Penetrancia , España , Estados Unidos
19.
Nat Methods ; 10(9): 881-4, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23892899

RESUMEN

The exponentially increasing number of sequenced genomes necessitates fast, accurate, universally applicable and automated approaches for the delineation of prokaryotic species. We developed specI (species identification tool; http://www.bork.embl.de/software/specI/), a method to group organisms into species clusters based on 40 universal, single-copy phylogenetic marker genes. Applied to 3,496 prokaryotic genomes, specI identified 1,753 species clusters. Of 314 discrepancies with a widely used taxonomic classification, >62% were resolved by literature support.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Marcadores Genéticos , Genoma , Filogenia , Células Procariotas/fisiología , Bases de Datos Factuales , Prochlorococcus/clasificación , Prochlorococcus/genética , Proteínas/genética , ARN Ribosómico 16S , Alineación de Secuencia/métodos
20.
Nat Methods ; 10(12): 1196-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24141494

RESUMEN

To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome-based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.


Asunto(s)
Metagenómica , Microbiota , Alineación de Secuencia/métodos , Algoritmos , Calibración , Análisis por Conglomerados , Biología Computacional/métodos , ADN Ribosómico/genética , Ligamiento Genético , Marcadores Genéticos , Genoma , Humanos , Intestinos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA