Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(5): e1011381, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155697

RESUMEN

Inflammasome activation is an essential innate immune defense mechanism against Salmonella infections. Salmonella has developed multiple strategies to avoid or delay inflammasome activation, which may be required for long-term bacterial persistence. However, the mechanisms by which Salmonella evades host immune defenses are still not well understood. In this study, Salmonella Enteritidis (SE) random insertion transposon library was screened to identify the key factors that affect the inflammasome activation. The type I secretion system (T1SS) protein SiiD was demonstrated to repress the NLRP3 inflammasome activation during SE infection and was the first to reveal the antagonistic role of T1SS in the inflammasome pathway. SiiD was translocated into host cells and localized in the membrane fraction in a T1SS-dependent and partially T3SS-1-dependent way during SE infection. Subsequently, SiiD was demonstrated to significantly suppress the generation of mitochondrial reactive oxygen species (mtROS), thus repressing ASC oligomerization to form pyroptosomes, and impairing the NLRP3 dependent Caspase-1 activation and IL-1ß secretion. Importantly, SiiD-deficient SE induced stronger gut inflammation in mice and displayed NLRP3-dependent attenuation of the virulence. SiiD-mediated inhibition of NLRP3 inflammasome activation significantly contributed to SE colonization in the infected mice. This study links bacterial T1SS regulation of mtROS-ASC signaling to NLRP3 inflammasome activation and reveals the essential role of T1SS in evading host immune responses.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Salmonella enteritidis , Sistemas de Secreción Tipo I , Transducción de Señal , Caspasa 1/metabolismo , Interleucina-1beta/metabolismo
2.
Differentiation ; 138: 100789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38896972

RESUMEN

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.


Asunto(s)
Adenosina Trifosfato , Diferenciación Celular , Osteoclastos , Osteoprotegerina , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Osteoclastos/metabolismo , Osteoclastos/citología , Animales , Adenosina Trifosfato/metabolismo , Ratones , Conexina 43/metabolismo , Conexina 43/genética , Fusión Celular , Antígeno CD47/metabolismo , Antígeno CD47/genética , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Transducción de Señal , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas del Tejido Nervioso
3.
Foodborne Pathog Dis ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995857

RESUMEN

This study aimed to understand the epidemiological characteristics of Salmonella in Tibetan pigs. We isolated, identified, and examined via antimicrobial susceptibility testing on Salmonella from Tibetan pigs breeder farms and slaughterhouses in Tibet, China. A genetic evolutionary tree was constructed on the basis of whole genome sequencing (WGS). A total of 81 Salmonella isolates were isolated from 987 samples. The main serovars were Salmonella Typhimurium and Salmonella London in Tibetan pigs. The isolated Salmonella Typhimurium isolates subjected to antimicrobial susceptibility testing showed varying degrees of resistance to ß-lactams, aminoglycosides, fluoroquinolones, sulfonamides, tetracyclines, and amphenicols. WGS analysis was performed on 20 Salmonella Typhimurium isolates in Tibet (n = 10), Jiangsu (n = 10), and 205 genome sequences downloaded from the Enterobase database to reveal their epidemiological and genetic characteristics. They were divided into two clusters based on core genome single-nucleotide polymorphisms: Cluster A with 112 isolates from Tibet and other regions in China and Cluster B with 113 isolates from Jiangsu and other regions. The isolates in Cluster A were further divided into two subclusters: A-1 with 40 isolates including Tibet and A-2 with 72 isolates from other regions. Virulence factors analysis revealed that all isolates from Tibet carried adeG, but this observation was not as common in Salmonella isolates from Jiangsu and other regions of China. Antibiotic resistance genes (ARGs) analysis showed that all isolates from Tibet carried blaTEM-55 and rmtB, which were absent in Salmonella isolates from Jiangsu and other regions of China. Genetic characteristic analysis and biofilm determination indicated that the biofilm formation capabilities of the isolates from Tibet were stronger than those of the isolates from Jiangsu and other regions of China. Our research revealed the epidemic patterns and genomic characteristics of Salmonella in Tibetan pigs and provided theoretical guidance for the prevention and control of local salmonellosis.

4.
BMC Immunol ; 24(1): 48, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012553

RESUMEN

BACKGROUND: Control of Tuberculosis (TB) infection is mainly the result of productive teamwork between T-cell populations and antigen presenting cells (APCs). However, APCs activation at the site of initiating cellular immune response during BCG early infection is not completely understood. METHODS: In this study, we injected C57BL/6 mice in intravenous (i.v) or subcutaneous (s.c) route, then splenic or inguinal lymph node (LN) DCs and MΦs were sorted, and mycobacteria uptake, cytokine production, antigen presentation activity, and cell phenotype were investigated and compared, respectively. RESULTS: Ag85A-specific T-cell immune response began at 6 days post BCG infection, when BCG was delivered in s.c route, Th17 immune response could be induced in inguinal LN. BCG could induce high level of activation phenotype in inguinal LN MΦs, while the MHC II presentation of mycobacteria-derived peptides by DCs was more efficient than MΦs. CONCLUSIONS: The results showed that BCG immunized route can decide the main tissue of T-cell immune response. Compared with s.c injected route, APCs undergo more rapid cell activation in spleen post BCG i.v infection.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Ratones , Animales , Ratones Endogámicos C57BL , Células Presentadoras de Antígenos , Linfocitos T , Vacuna BCG
5.
J Virol ; 96(12): e0220521, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35638850

RESUMEN

The pathogenesis of white spot syndrome virus (WSSV) is largely unclear. In this study, we found that actin nucleation and clathrin-mediated endocytosis were recruited for internalization of WSSV into crayfish hematopoietic tissue (Hpt) cells. This internalization was followed by intracellular transport of the invading virions via endocytic vesicles and endosomes. After envelope fusion within endosomes, the penetrated nucleocapsids were transported along microtubules toward the periphery of the nuclear pores. Furthermore, the nuclear transporter CqImportin α1/ß1, via binding of ARM repeat domain within CqImportin α1 to the nuclear localization sequences (NLSs) of viral cargoes and binding of CqImportin ß1 to the nucleoporins CqNup35/62 with the action of CqRan for docking to nuclear pores, was hijacked for both targeting of the incoming nucleocapsids toward the nuclear pores and import of the expressed viral structural proteins containing NLS into the cell nucleus. Intriguingly, dysfunction of CqImportin α1/ß1 resulted in significant accumulation of incoming nucleocapsids on the periphery of the Hpt cell nucleus, leading to substantially decreased introduction of the viral genome into the nucleus and remarkably reduced nuclear import of expressed viral structural proteins with NLS; both of these effects were accompanied by significantly inhibited viral propagation. Accordingly, the survival rate of crayfish post-WSSV challenge was significantly increased after dysfunction of CqImportin α1/ß1, also showing significantly reduced viral propagation, and was induced either by gene silencing or by pharmacological blockade via dietary administration of ivermectin per os. Collectively, our findings improve our understanding of WSSV pathogenesis and support future antiviral designing against WSSV. IMPORTANCE As one of the largest animal DNA viruses, white spot syndrome virus (WSSV) has been causing severe economical loss in aquaculture due to the limited knowledge on WSSV pathogenesis for an antiviral strategy. We demonstrate that the actin cytoskeleton, endocytic vesicles, endosomes, and microtubules are hijacked for WSSV invasion; importantly, the nuclear transporter CqImportin α1/ß1 together with CqRan were recruited, via binding of CqImportin ß1 to the nucleoporins CqNup35/62, for both the nuclear pore targeting of the incoming nucleocapsids and the nuclear import of expressed viral structural proteins containing the nuclear localization sequences (NLSs). This is the first report that NLSs from both viral structure proteins and host factor are elaborately recruited together to facilitate WSSV infection. Our findings provide a novel explanation for WSSV pathogenesis involving systemic hijacking of host factors, which can be used for antiviral targeting against WSSV disease, such as the blockade of CqImportin α1/ß1 with ivermectin.


Asunto(s)
Transporte Activo de Núcleo Celular , Citoesqueleto , Proteínas Estructurales Virales , Virus del Síndrome de la Mancha Blanca 1 , Animales , Antivirales , Astacoidea/virología , Citoesqueleto/virología , Ivermectina , Microtúbulos , Proteínas de Complejo Poro Nuclear , Replicación Viral , Virus del Síndrome de la Mancha Blanca 1/patogenicidad
6.
World J Surg Oncol ; 20(1): 89, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35307012

RESUMEN

BACKGROUND: Colon adenocarcinoma (COAD) is one of the common cancers worldwide. Collagen triple helix repeat containing 1 (CTHRC1) has been reported to be involved in cell invasion, angiogenesis, and the promotion of epithelial-mesenchymal transformation by mediating multiple signaling pathways. However, the role of CTHRC1 in COAD has not yet been determined. METHODS: Differentially expressed genes were evaluated using gene expression data from the Oncomine and TIMER databases. Correlations between CTHRC1 gene expression and clinicopathological factors were analyzed using gene expression data from UALCAN databases. Then, we searched the GEPIA database to evaluate the association of CTHRC1 gene expression with clinical outcomes. The cBioPortal database was used to analyze CTHRC1 genetic alterations. Subsequently, the TIMER website was chosen to assess the correlation of CTHRC1 with the tumor immune cell infiltration level. The TCGA dataset was used for a gene set enrichment analysis (GSEA). RESULT: CTHRC1 was highly expressed in COAD patients, and significantly related to poor prognosis. In addition, elevated expression of CTHRC1 was related to the clinical stage and pathological type of COAD. The GSEA analysis showed that CTHRC1 was enriched in Gα signaling, GCPR ligand binding, neutrophil degranulation, interleukin signaling, and tumor-associated pathways. In addition, CTHRC1 was significantly associated with the expression of multiple immune markers related to specific immune cells. CONCLUSION: This study suggest that CTHRC1 expression is related to the prognosis and immune infiltration of COAD patients. Therefore, CTHRC1 may be a new candidate prognostic biomarker for determining immune infiltration levels and providing COAD prognoses.


Asunto(s)
Adenocarcinoma/diagnóstico , Adenocarcinoma/inmunología , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/inmunología , Proteínas de la Matriz Extracelular/metabolismo , Adenocarcinoma/patología , Neoplasias del Colon/patología , Transición Epitelial-Mesenquimal , Humanos , Pronóstico , Transducción de Señal
7.
J Dairy Sci ; 105(7): 6021-6029, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35570041

RESUMEN

Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important zoonotic disease. This infection is difficult to control because of the limited ability of the tuberculin skin test (TST) and ancillary IFN-γ release assay to detect all infected animals. In this study, we aimed to develop an efficient assay based on the enzyme-linked immunospot (ELISpot) technique for the diagnosis of bTB, with IFN-γ monoclonal antibodies 3E9 and Bio-labeled 6F8 used as capture and detection antibodies, respectively. As expected, there were significantly more M. bovis-specific spot-forming units (SFU) in bTB-infected cattle than in healthy cattle when an M. bovis-specific antigen, CFP-10-ESAT-6 fusion protein (CE protein), was used. The M. bovis IFN-γ ELISpot assay demonstrated a high level of agreement (90.83%) with the BOVIGAM ELISA test (Thermo Fisher Scientific) for detecting bTB. Furthermore, 3 of 109 cattle tested negative by both the TST and the BOVIGAM ELISA tests, but positive by the ELISpot assay (TST- ELISA- ELISpot+). During subsequent long-term monitoring, these 3 cattle became TST+ ELISA+ ELISpot+. These results suggest that the M. bovis IFN-γ ELISpot assay we established could detect infected cattle earlier than the BOVIGAM ELISA test.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Tuberculosis Bovina , Animales , Antígenos Bacterianos , Proteínas Bacterianas , Bovinos , Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Interferón gamma , Mycobacterium bovis , Sensibilidad y Especificidad , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/microbiología
8.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967962

RESUMEN

As the most severely lethal viral pathogen for crustaceans in both brackish water and freshwater, white spot syndrome virus (WSSV) has a mechanism of infection that remains largely unknown, which profoundly limits the control of WSSV disease. By using a hematopoietic tissue (Hpt) stem cell culture from the red claw crayfish Cherax quadricarinatus suitable for WSSV propagation in vitro, the intracellular trafficking of live WSSV, in which the acidic-pH-dependent endosomal environment was a prerequisite for WSSV fusion, was determined for the first time via live-cell imaging. When the acidic pH within the endosome was alkalized by chemicals, the intracellular WSSV virions were detained in dysfunctional endosomes, resulting in appreciable blocking of the viral infection. Furthermore, disrupted valosin-containing protein (C. quadricarinatus VCP [CqVCP]) activity resulted in considerable aggregation of endocytic WSSV virions in the disordered endosomes, which subsequently recruited autophagosomes, likely by binding to CqGABARAP via CqVCP, to eliminate the aggregated virions within the dysfunctional endosomes. Importantly, both autophagic sorting and the degradation of intracellular WSSV virions were clearly enhanced in Hpt cells with increased autophagic activity, demonstrating that autophagy played a defensive role against WSSV infection. Intriguingly, most of the endocytic WSSV virions were directed to the endosomal delivery system facilitated by CqVCP activity so that they avoided autophagy degradation and successfully delivered the viral genome into Hpt cell nuclei, which was followed by the propagation of progeny virions. These findings will benefit anti-WSSV target design against the most severe viral disease currently affecting farmed crustaceans.IMPORTANCE White spot disease is currently the most devastating viral disease in farmed crustaceans, such as shrimp and crayfish, and has resulted in a severe ecological problem for both brackish water and freshwater aquaculture areas worldwide. Efficient antiviral control of WSSV disease is still lacking due to our limited knowledge of its pathogenesis. Importantly, research on the WSSV infection mechanism is also quite meaningful for the elucidation of viral pathogenesis and virus-host coevolution, as WSSV is one of the largest animal viruses, in terms of genome size, that infects only crustaceans. Here, we found that most of the endocytic WSSV virions were directed to the endosomal delivery system, strongly facilitated by CqVCP, so that they avoided autophagic degradation and successfully delivered the viral genome into the Hpt cell nucleus for propagation. Our data point to a virus-sorting model that might also explain the escape of other enveloped DNA viruses.


Asunto(s)
Astacoidea/metabolismo , Autofagia/fisiología , Endosomas/metabolismo , Proteína que Contiene Valosina/metabolismo , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Astacoidea/virología , Técnicas de Cultivo de Célula , Endosomas/virología , Enfermedades de los Peces/virología , Concentración de Iones de Hidrógeno , Virosis
9.
Foodborne Pathog Dis ; 18(7): 477-488, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34251907

RESUMEN

Salmonella spp. is a major foodborne pathogen that is distributed among most pork production chains worldwide. This study aimed to investigate the dynamic changes in Salmonella spp. along the pig breeding process monthly from April 2018 to March 2019 in a pig farm in Shanghai, China, and identify the potential critical control points during the production. In total, 239 Salmonella spp. isolates were obtained from 1389 samples, in which Salmonella were detected from 26.3% (222/843) of fecal samples, 7.1% (17/240) of feed samples, and 0.0% (0/306) of both water and insect samples. Seven different serotypes were identified, with the predominant serotype being Salmonella Derby (21.8%), followed by Salmonella Typhimurium (18.8%), Salmonella Rissen (16.3%), Salmonella Mbandaka (12.6%), and Salmonella 1,4,[5],12:i:- (11.8%). Most probable number (MPN) analysis revealed that the load of Salmonella spp. gradually increased along the pig production chain, while the highest number of Salmonella spp. isolates was at the fattening stage (MPN value, 11-15 MPN/g). The pulsed-field gel electrophoresis showed that both Salmonella Typhimurium and Salmonella Derby isolates were grouped to six clusters. The antimicrobial resistance analyzed demonstrated that 80.0% of the isolates were of multidrug resistance and resistant to sulfamethoxazole (84.5%), lincomycin (89.4%), ampicillin (96.9%), oxytetracycline (93.8%), and tetracycline (95.1%). We further evaluated the Salmonella spp. Resistance to quaternary ammonium compounds (QACs) showed an increasing trend along with the testing period indicating that the use of QACs could induce the resistance of Salmonella spp. to QACs. Our study confirmed the dynamic changes in Salmonella spp. over time and space in this pig farm and identified feed and the fattening house as the key points for the prevention and control of Salmonella spp. contamination.


Asunto(s)
Farmacorresistencia Microbiana/genética , Salmonella/clasificación , Salmonella/efectos de los fármacos , Salmonella/genética , Salmonella/aislamiento & purificación , Mataderos , Animales , Antibacterianos/farmacología , China , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Electroforesis en Gel de Campo Pulsado , Microbiología de Alimentos , Carne/microbiología , Pruebas de Sensibilidad Microbiana , Prevalencia , Salmonelosis Animal/microbiología , Serogrupo , Porcinos , Enfermedades de los Porcinos/microbiología
10.
BMC Microbiol ; 20(1): 226, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32723297

RESUMEN

BACKGROUND: Salmonella Enteritidis (SE) is one of the major foodborne zoonotic pathogens of worldwide importance which can induce activation of NLRC4 and NLRP3 inflammasomes during infection. Given that the inflammasomes play an essential role in resisting bacterial infection, Salmonella has evolved various strategies to regulate activation of the inflammasome, most of which largely remain unclear. RESULTS: A transposon mutant library in SE strain C50336 was screened for the identification of the potential factors that regulate inflammasome activation. We found that T3SS-associated genes invC, prgH, and spaN were required for inflammasome activation in vitro. Interestingly, C50336 strains with deletion or overexpression of Dam were both defective in activation of caspase-1, secretion of IL-1ß and phosphorylation of c-Jun N-terminal kinase (Jnk). Transcriptome sequencing (RNA-seq) results showed that most of the differentially expressed genes and enriched KEGG pathways between the C50336-VS-C50336Δdam and C50336-VS-C50336::dam groups overlapped, which includes multiple signaling pathways related to the inflammasome. C50336Δdam and C50336::dam were both found to be defective in suppressing the expression of several anti-inflammasome factors. Moreover, overexpression of Dam in macrophages by lentiviral infection could specifically enhance the activation of NLRP3 inflammasome independently via promoting the Jnk pathway. CONCLUSIONS: These data indicated that Dam was essential for modulating inflammasome activation during SE infection, there were complex and dynamic interplays between Dam and the inflammasome under different conditions. New insights were provided about the battle between SE and host innate immunological mechanisms.


Asunto(s)
Proteínas Bacterianas/metabolismo , Inflamasomas/metabolismo , Salmonella enteritidis/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Animales , Proteínas Bacterianas/genética , Caspasa 1/metabolismo , Expresión Génica , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos/metabolismo , Ratones , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Infecciones por Salmonella/virología , Salmonella enteritidis/enzimología , Transducción de Señal , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Transcriptoma
11.
Int J Med Microbiol ; 309(8): 151337, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31477487

RESUMEN

Salmonella Enteritidis (SE) is a highly adapted pathogen causing severe economic losses in the poultry industry worldwide. Chickens infected by SE are a major source of human food poisoning. Vaccination is an effective approach to control SE infections. This study evaluated the immunogenicity and protective efficacy of a SE sptP deletion mutant (C50336ΔsptP) as a live attenuated vaccine (LAV) candidate in chickens. 14 day-old specific pathogen-free (SPF) chickens were intramuscularly immunized with various doses of C50336ΔsptP. Several groups of chickens were challenged with the virulent wild-type SE strain Z-11 via the same route at 14 days post vaccination. Compared to the control group, the groups vaccinated with 1 × 106, 1 × 107 and 1 × 108 colony-forming units (CFU) of C50336ΔsptP exhibited no clinical symptoms after immunization. Only slight pathological changes occurred in the organs of the 1 × 109 CFU vaccinated group. C50336ΔsptP bacteria were cleared from the organs of immunized chickens within 14 days after vaccination. Lymphocyte proliferation and serum cytokine analyses indicated that significant cellular immune responses were induced after the vaccination of C50336ΔsptP. Compared to the control group, specific IgG antibody levels increased significantly in vaccinated chickens, and the levels increased markedly after the challenge. The 1 × 107, 1 × 108, and 1 × 109 CFU vaccinated chickens groups showed no clinical symptoms or pathological changes, and no death after the lethal challenge. Whereas severe clinical signs of disease and pathological changes were observed in the control group chickens after the challenge. These results suggest that a single dose of C50336ΔsptP could be an effective LAV candidate to against SE infection in chickens.


Asunto(s)
Proteínas Bacterianas/genética , Inmunogenicidad Vacunal , Enfermedades de las Aves de Corral/prevención & control , Salmonelosis Animal/prevención & control , Vacunas contra la Salmonella/inmunología , Eliminación de Secuencia , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Pollos , Citocinas/sangre , Inmunoglobulina G/sangre , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/inmunología , Salmonella enteritidis/genética , Salmonella enteritidis/inmunología , Organismos Libres de Patógenos Específicos , Vacunación/veterinaria , Vacunas Atenuadas/inmunología
12.
BMC Immunol ; 19(1): 19, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940854

RESUMEN

BACKGROUND: Control of Mycobacterium tuberculosis (Mtb) infection requires CD4+ T-cell responses and major histocompatibility complex class II (MHC II) presentation of Mtb antigens (Ags). Dendritic cells (DCs) are the most potent of the Ag-presenting cells and are central to the initiation of T-cell immune responses. Much research has indicated that DCs play an important role in anti-mycobacterial immune responses at early infection time points, but the kinetics of Ag presentation by these cells during these events are incompletely understood. RESULTS: In the present study, we evaluated in vivo dynamics of early Ag presentation by murine lymph-node (LN) DCs in response to Mycobacterium bovis bacillus Calmette-Guérin (BCG) Ag85A protein. Results showed that the early Ag-presenting activity of murine DCs induced by M. bovis BCG Ag85A protein in vivo was transient, appearing at 4 h and being barely detectable at 72 h. The transcription levels of CIITA, MHC II and the expression of MHC II molecule on the cell surface increased following BCG infection. Moreover, BCG was found to survive within the inguinal LN DC pool, representing a continuing source of mycobacterial Ag85A protein, with which LN DCs formed Ag85A peptide-MHCII complexes in vivo. CONCLUSIONS: Our results demonstrate that a decrease in Ag85A peptide production as a result of the inhibition of Ag processing to is largely responsible for the short duration of Ag presentation by LN DCs during BCG infection in vivo.


Asunto(s)
Aciltransferasas/inmunología , Presentación de Antígeno/inmunología , Antígenos Bacterianos/inmunología , Células Dendríticas/inmunología , Ganglios Linfáticos/inmunología , Mycobacterium bovis/inmunología , Tuberculosis/inmunología , Aciltransferasas/metabolismo , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/metabolismo , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Supervivencia Celular/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/microbiología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/microbiología , Ratones Endogámicos C57BL , Mycobacterium bovis/fisiología , Factores de Tiempo , Tuberculosis/prevención & control , Tuberculosis/veterinaria
13.
BMC Immunol ; 18(1): 21, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468643

RESUMEN

BACKGROUND: Activation of inflammasome contributes to the clearance of intracellular bacteria. C-terminus of E. coli EscI protein can activate NLRC4 (NLR family, CARD domain containing-4) inflammasome in macrophages. The purpose of this study was to determine if activation of NLRC4 inflammasome by EscI can reduce the colonization of Salmonella in mice. RESULTS: A recombinant S. typhimurium strain expressing fusion protein of the N-terminal SspH2 (a Salmonella type III secretion system 2 effector) and C-terminal EscI was constructed and designated as X4550(pYA3334-SspH2-EscI). In vitro assay showed that X4550(pYA3334-SspH2-EscI) significantly enhanced IL-1ß and IL-18 secretion (P < 0.05) and pyroptotic cell death of mouse peritoneal macrophages, compared with those infected with control strain, X4550(pYA3334-SspH2). In vivo studies showed that colonization of X4550(pYA3334-SspH2-EscI) in both spleen and liver were significantly lower than that of X4550(pYA3334-SspH2) (P < 0.05). The bacterial counts of X4550(pYA3334-SspH2-EscI) in mice decreased, while those of X4550(pYA3334-SspH2) increased over the time after infection. Additionally, X4550(pYA3334-SspH2-EscI) induced a less pathological alteration in spleen and liver than X4550(pYA3334-SspH2). CONCLUSION: Fusion protein SspH2-EscI may be translocated into macrophages and activate NLRC4 inflammasome, which limits Salmonella colonization in spleen and liver of mice.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/metabolismo , Hígado/microbiología , Macrófagos/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Bazo/microbiología , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Células Cultivadas , Proteínas de Escherichia coli/genética , Femenino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Hígado/patología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Microorganismos Modificados Genéticamente , Proteínas Recombinantes de Fusión/genética , Salmonella typhimurium/genética , Bazo/patología , Sistemas de Secreción Tipo III/genética
14.
Fish Shellfish Immunol ; 58: 669-677, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27725259

RESUMEN

Gradually increasing atmospheric CO2 partial pressure (pCO2) has caused an imbalance in carbonate chemistry and resulted in decreased seawater pH in marine ecosystems, termed seawater acidification. Anthropogenic seawater acidification is postulated to affect the physiology of many marine calcifying organisms. To understand the possible effects of seawater acidification on the proteomic responses of a marine crustacean brine shrimp (Artemia sinica) three groups of cysts were hatched and further raised in seawater at different pH levels (8.2 as control and 7.8 and 7.6 as acidification stress levels according to the predicted levels at the end of this century and next century, respectively) for 1, 7 and 14 days followed by examination of the protein expression changes via two-dimensional gel electrophoresis. Searches of protein databases revealed that 67 differential protein spots were altered due to lower pH level (7.6 and 7.8) stress in comparison to control groups (pH 8.2) by mass spectrometry. Generally, these differentially expressed proteins included the following: 1) metabolic process-related proteins involved in glycolysis and glucogenesis, nucleotide/amino acid/fatty acid metabolism, protein biosynthesis, DNA replication and apoptosis; 2) stress response-related proteins, such as peroxiredoxin, thioredoxin peroxidase, 70-kDa heat shock protein, Na/K ATPase, and ubiquinol-cytochrome c reductase; 3) immune defence-related proteins, such as prophenoloxidase and ferritin; 4) cytoskeletal-related proteins, such as myosin light chain, TCP1 subunit 2, tropomyosin and tubulin alpha chain; and 5) signal transduction-related proteins, such as phospholipase C-like protein, 14-3-3 zeta, translationally controlled tumour protein and RNA binding motif protein. Taken together, these data support the idea that CO2-driven seawater acidification may affect protein expression in the crustacean A. sinica and possibly also in other species that feed on brine shrimp in the ecosystem, particularly marine food webs.


Asunto(s)
Artemia/fisiología , Proteínas de Artrópodos/genética , Proteoma , Agua de Mar/química , Animales , Artemia/genética , Proteínas de Artrópodos/metabolismo , Dióxido de Carbono/análisis , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Concentración de Iones de Hidrógeno , Espectrometría de Masas en Tándem
15.
Fish Shellfish Immunol ; 59: 469-483, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27825947

RESUMEN

White spot syndrome virus (WSSV) is one of the most prevalent and widespread viruses in both shrimp and crayfish aquaculture. MicroRNAs (miRNAs) are crucial post-transcriptional regulators and play critical roles in cell differentiation and proliferation, apoptosis, signal transduction and immunity. In this study, miRNA expression profiles were identified via deep sequencing in red claw crayfish Cherax quadricarinatus haematopoietic tissue (Hpt) cell cultures infected with WSSV at both early (i.e., 1 hpi) and late (i.e., 12 hpi) infection stages. The results showed that 2 known miRNAs, namely, miR-7 and miR-184 play key roles in immunity. Meanwhile, 106 novel miRNA candidates were predicted by software in these combined miRNA transcriptomes. Compared with two control groups, 36 miRNAs showed significantly different expression levels after WSSV challenge. Furthermore, 10 differentially expressed miRNAs in WSSV-exposed Hpt cells were randomly selected for expression analysis by quantitative real-time RT-PCR. Consistent with the expression profiles identified by deep sequencing, RT-PCR showed a significant increase or decrease in miRNA expression in Hpt cells after WSSV infection. Prediction of targets of miRNAs such as miR-7, cqu-miR-52, cqu-miR-126 and cqu-miR-141 revealed that their target genes have diverse biological roles, including not only immunity but also transcriptional regulation, energy metabolism, cell communication, cell differentiation, cell death, autophagy, endocytosis and apoptosis. These results provide insight into the molecular mechanism of WSSV infection and highlight the function of miRNAs in the regulation of the immune response against WSSV infection in crustaceans.


Asunto(s)
Astacoidea/genética , Astacoidea/virología , Inmunidad Innata , MicroARNs/genética , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Astacoidea/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
16.
Int J Mol Sci ; 16(10): 24127-38, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26473844

RESUMEN

Macrophages (MΦ) and dendritic cells (DCs) are both pivotal antigen presenting cells capable of inducing specific cellular responses to inhaled mycobacteria, and thus, they may be important in the initiation of early immune responses to mycobacterial infection. In this study, we evaluated and compared the roles of murine splenic DCs and MΦs in immunity against Mycobacterium bovis Bacillus Calmette-Guérin (M.bovis BCG). The number of internalized rBCG-GFP observed was obviously greater in murine splenic MΦs compared with DCs, and the intracellular reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) levels in MΦs were all higher than in DCs. DCs have a stronger capacity for presenting Ag85A peptide to specific T hybridoma and when the murine splenic MΦs were infected with BCG and rBCG::Ag85A, low level of antigen presenting activity was detected. These data suggest that murine splenic MΦs participate in mycobacteria uptake, killing and inducing inflammatory response, whereas the murine splenic DCs are primarily involved in specific antigen presentation and T cell activation.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Mycobacterium bovis/inmunología , Linfocitos T/inmunología , Animales , Antígenos Bacterianos/inmunología , Citocinas/inmunología , Femenino , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/genética , Óxido Nítrico/inmunología , Óxido Nítrico Sintasa de Tipo II/inmunología , Especies Reactivas de Oxígeno/inmunología , Bazo/citología , Bazo/inmunología
17.
Wei Sheng Wu Xue Bao ; 55(2): 220-6, 2015 Feb 04.
Artículo en Zh | MEDLINE | ID: mdl-25958703

RESUMEN

OBJECTIVE: The aim of this study was to express Mycobacterium tuberculosis MPT83 protein and to evaluate its immunogenicity in murine model as well as the serological diagnosis potential value for bovine tuberculosis. METHODS: The fragment of mpt83 gene was amplified and constructed into pET30a(+)-mpt83 recombinant plasmid. MPT83 fusion protein was purified with His affinity chromatography column from strain of BL21(DE3)-pET30a(+)-mpt83 after induced by IPTG, and then used to evaluate its immunogenicity in mice and the potential application in ELISA assay for the detection of bovine tuberculosis. RESULTS: SDS-PAGE and Western blot results show that MPT83 fusion protein was expressed successfully and possessed a good immunological reactivity. Flow cytometry (FCM) analysis displayed decreased expression of CD80 on dendritic cells and up-regulation of CD69 expression on both splenic CD4+ and CD8+ T cells. Meanwhile, more IL-4 specific secreting cell spots rather than those of IFN-γ were detected by ELISPOT assay in C57BL/6 mice injected with the fusion protein. Total 200 serum samples were detected by indirect ELISA based on MPT83 as antigen and the results showed 48.6% positive coincidence rate and 90% negative's compared to results of peripheral blood specific IFN-γ release assay in bovine tuberculosis detection. CONCLUSIONS: MPT83 fusion protein was expressed successfully with capability of eliciting Th2 immune response in mice and could be used for ELISA assay to detect bovine tuberculosis as a serological diagnosis antigen.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas de la Membrana/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Bovina/diagnóstico , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Linfocitos T CD4-Positivos/inmunología , Bovinos , Femenino , Interferón gamma/inmunología , Interleucina-4/inmunología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Células Th2/inmunología , Tuberculosis Bovina/inmunología , Tuberculosis Bovina/microbiología
18.
Protein Expr Purif ; 99: 131-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24794970

RESUMEN

A stable mammalian cell line expressing highly active bovine interferon-gamma (BoIFN-γ) was generated using Flp recombinase-mediated integration. This recombinant 293 cell line (B1) efficiently secreted FLAG-tagged BoIFN-γ protein into the culture supernatant, as determined by ELISA and Western blot. The recombinant BoIFN-γ exhibited high anti-viral activity, suggesting that the 293 cells expressed BoIFN-γ that structurally and biologically resembled the natural protein. Two monoclonal antibodies (mAbs) with high affinity for the 293 cell-expressed BoIFN-γ were identified using this cell line, and these mAbs can be used for the development of diagnostic kits. Thus, this work demonstrates the successful generation of a 293 cell line that produces large quantities of highly active BoIFN-γ and demonstrates its potential application in the research of bovine infectious diseases.


Asunto(s)
Interferón gamma/biosíntesis , Animales , Antivirales/farmacología , Células COS , Bovinos , Línea Celular , ADN Nucleotidiltransferasas , Células HEK293 , Humanos , Interferón gamma/inmunología , Interferón gamma/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-38805143

RESUMEN

This study aims to screen for potential probiotic lactic acid bacteria from the intestines of meat-type pigeon squabs. Ligilactobacillus salivarius YZU37 was identified as the best comprehensive performed strain. Being acid- and bile salt-tolerant, it displayed growth-inhibition activities against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, and Salmonella typhimurium SL1344, exhibited sensitivity to 6 commonly used antibiotics, and endowed with good cell surface hydrophobicity, auto-aggregation property, and anti-oxidant activities. Results of in vitro experiments indicated that the bacteriostatic effects of this strain were related to the production of proteinaceous substances that depend on acidic conditions. Whole-genome sequencing of L. salivarius YZU37 was performed to elucidate the genetic basis underlying its probiotic potential. Pangenome analysis of L. salivarius YZU37 and other 212 L. salivarius strains available on NCBI database revealed a pigeon-unique gene coding choloylglycine hydrolase (CGH), which had higher enzyme-substrate binding affinity than that of the common CGH shared by L. salivarius strains of other sources. Annotation of the functional genes in the genome of L. salivarius YZU37 revealed genes involved in responses to acid, bile salt, heat, cold, heavy metal, and oxidative stresses. The whole genome analysis also revealed the absence of virulence and toxin genes and the presence of 65 genes distributed under 4 CAZymes classes, 2 CRISPR-cas regions, and 3 enterolysin A clusters which may confer the acid-dependent antimicrobial potential of L. salivarius YZU37. Altogether, our results highlighted the probiotic potential of L. salivarius YZU37. Further in vivo investigations are required to elucidate its beneficial effects on pigeons.

20.
Poult Sci ; 103(9): 104043, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043031

RESUMEN

Salmonellosis in poultry is detrimental to the advancement of the breeding industry and poses hazards to human health. Approximately 2,600 Salmonella varieties exist, among which S. Enteritidis, S. Pullorum, S. Typhimurium, and S. Infantis are prevalent serotypes in the poultry industry in recent years. They can also infect humans by contaminating poultry eggs and meat. Therefore, identifying these serotypes is crucial for successful preventive and control interventions. The White-Kauffmann-Le Minor scheme is time-consuming and requires expensive reagents. Whole-genome sequencing (WGS) and other molecular biology techniques require skilled technical staff. In comparison, the polymerase chain reaction (PCR) is more accurate, rapid, and inexpensive, thus proving suitable for widespread application in the poultry industry. Here, we selected 4 specific primers: lygD, mdh, ipaJ, and SIN_02055, which correspond to detecting S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, respectively. They were integrated into a 1-step multiplex PCR method. We optimized the PCR method by utilizing specificity test results to determine the optimal annealing temperature (57°C). The PCR method exhibited excellent sensitivity for genomic DNA and bacterial cultures. We used the developed method to determine 157 clinical Salmonella isolates from various stages of the poultry production chain. The results aligned with serotype data generated via WGS analysis, demonstrating the method's excellent accuracy. In conclusion, this study developed a 1-step multiplex PCR method that simultaneously identifies S. Enteritidis, S. Typhimurium, S. Pullorum, and S. Infantis, allowing routine mass detection in the grass-root poultry industry.


Asunto(s)
Pollos , Reacción en Cadena de la Polimerasa Multiplex , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Salmonelosis Animal/microbiología , Salmonelosis Animal/diagnóstico , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/diagnóstico , Pollos/microbiología , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Reacción en Cadena de la Polimerasa Multiplex/métodos , Salmonella/aislamiento & purificación , Salmonella/genética , Sensibilidad y Especificidad , Serogrupo , Crianza de Animales Domésticos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA