Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(45): e202309923, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37584379

RESUMEN

Fusing condensed aromatics into multi-resonance (MR) frameworks has been an exquisite strategy to modulate the optoelectronic properties, which, however, always sacrifices the small full width at half maxima (FWHM). Herein, we strategically embed B-N/B-O contained heterocycles as fusion locker into classical MR prototypes, which could enlarge the π-extension and alleviate the steric repulsion for an enhanced planar skeleton to suppress the high-frequency stretching/ scissoring vibrations for ultra-narrowband emissions. Sky-blue emitters with extremely small FWHMs of 17-18 nm are thereafter obtained for the targeted emitters, decreased by (1.4-1.9)-fold compared with the prototypes. Benefiting from their high photoluminescence quantum yields of >90 % and fast radiative decay rates of >108  s-1 , one of those emitters shows a high maximum external quantum efficiency of 31.9 % in sensitized devices, which remains 25.8 % at a practical luminance of 1,000 cd m-2 with a small FWHM of merely 19 nm. Notably a long operation half-lifetime of 1,278 h is also recorded for the same device, representing one of the longest lifetimes among sky-blue devices based on MR emitters.

2.
Angew Chem Int Ed Engl ; 61(12): e202200059, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35064995

RESUMEN

Thermally activated delayed fluorophors (TADF) featuring through-space charge transfers (TSCT) suffer from low radiative decay rates (kr s), especially for blue emitters. Here, a xanthene bridge is adopted to construct space-confined face-to-face donor-acceptor alignment and minimize their distances down to 2.7-2.8 Å, even shorter than the interlayer distance of graphite and thus strengthening the electronic interactions. The resulting blue TSCT-TADF emitters exhibit peaks around ≈460 nm, photoluminescence quantum yields of >90 %, and kr s of nearly 107  s-1 , almost 2-10 times higher than previously observed values with comparable reverse intersystem crossing rates. The corresponding blue organic light-emitting diodes show maximum external quantum efficiencies of 27.8 % and 34.7 % with Commission Internationale de L'Eclairage y coordinates of 0.29 and 0.15 using those molecules as emitters and sensitizers, respectively.

3.
Angew Chem Int Ed Engl ; 61(24): e202202380, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35363418

RESUMEN

Herein, we report a general strategy for achieving ultra-pure green emissions by suppressing the shoulder peaks in the emission spectra of conventional polycyclic aromatic hydrocarbons (PAHs). Through precise synthetic fusion of multi-resonance (MR) fragments with conventional PAH, extended π-conjugation lengths, increased molecular rigidity, and reduced vibrational frequency could be simultaneously realized. The proof-of-concept emitters exhibited ultra-pure green emissions with dominant peaks at ca. 521 nm, photoluminescence quantum yields that are greater than 99 %, a small full-width-at-half-maximum of 23 nm, and CIE coordinates of (0.16, 0.77). The bottom-emitting organic light-emitting diode (OLED) exhibited a record-high CIEy value of 0.74 and a high maximum external quantum efficiency of 30.5 %. The top-emitting OLED not only achieved a BT.2020 green color (CIE: 0.17, 0.78) for the first time but also showed superior performance among all green OLED devices, with a current efficiency of 220 cd A- .

4.
Angew Chem Int Ed Engl ; 61(14): e202117181, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35092123

RESUMEN

Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m-2 after 94 hours.

5.
Angew Chem Int Ed Engl ; 61(38): e202206916, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-35754001

RESUMEN

Polycyclo-heteraborin multi-resonance (MR) emitters are promising for high color-purity organic light-emitting diodes (OLEDs). Here, unlike the most common heteroatom ternary-doped (X/B/N) frameworks, a binary-doped (B/N) skeleton is reported with a large energy band for wide-range color tunability. Based on this parent-segment, a "one-pot" catalyst-free borylation method is developed which generates deep blue to pure green MR emitters from readily available starting materials, with peaks at 426-532 nm and full-width-at-half-maxima of 27-38 nm. Impressively, a maximum external quantum efficiency of nearly 40 % is recorded for the corresponding device with Commission Internationale de l'Eclairage coordinates of (0.14, 0.16), representing the state-of-the-art performances. This work presents a new paradigm and synthesis of B/N-doped MR emitters and will motivate the study of other novel frameworks.

6.
Angew Chem Int Ed Engl ; 61(40): e202207293, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35749578

RESUMEN

Despite the remarkable multiple resonance (MR) optoelectronic properties of organic nanographenes with boron and nitrogen atoms disposed para to each other, the synthetic procedures are sophisticated with low yields and the molecular skeletons are limited. Here, a new paradigm of easy-to-access MR emitter is constructed by simplifying the multiborylation through amine-directed formation of B-N bonds while introducing an additional para-positioned nitrogen atom to trigger the MR effect. The proof-of-concept molecules exhibit narrowband emissions at 480 and 490 nm, with full width at half maxima (FWHMs) of only 29 and 34 nm. The devices based on them showed external quantum efficiencies (EQE) of >33.0 %, which remained above 24.0 % even at a high brightness of 5000 cd m-2 . This is the first example of MR emitters with a B-N covalent bond, not only decreasing the synthesis difficulty but also increasing the diversity of MR skeletons for emerging new optoelectronic properties.

7.
Angew Chem Int Ed Engl ; 61(51): e202213615, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36287039

RESUMEN

Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.

8.
Chemistry ; 27(20): 6274-6282, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33496983

RESUMEN

A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 % for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m-2 . These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.

9.
Inorg Chem ; 60(2): 1099-1106, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33369385

RESUMEN

BN-doped polycyclic aromatic hydrocarbons (PAHs) have attracted numerous attentions because of their fascinating optical and electronic properties. In this work, a series of electron-donor (amine)- and -acceptor (borane)-functionalized BN-doped polycyclic aromatic hydrocarbons were prepared to study the substituents' effect on the photophysical properties. As a result, the compound with both donor and acceptor, BN, exhibits both local emission (LE) and charge-transfer emission (CT) in polar solvents. Especially, the CT emission with a longer wavelength revealed a lifetime as long as millisecond time scale at room temperature, indicating typical phosphorescence characteristics. Low-temperature photoluminescent (PL) spectroscopy and a theoretical study were conducted to help to interpret this phenomenon, and it turned out to be the lowering of the S1 energy level of BN which makes the intersystem crossing favorable. Furthermore, fluoride anion titration experiments exhibit the application potential of the dual-emission phenomenon of BN for ratiometric sensory materials.

10.
Angew Chem Int Ed Engl ; 59(28): 11267-11272, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32220121

RESUMEN

Enantiopure molecules based on macrocyclic architecture are unique for applications in enantioselective host-guest recognition, chiral sensing and asymmetric catalysis. Taking advantage of the chiral transfer from the intrinsically planar chirality of pillar[5]arenes, we herein present an efficient and straightforward approach to achieve early examples of highly luminescent chiral systems (P5NN and P5BN). The optical resolution of their enantiomers has been carried out via preparative chiral HPLC, which was ascribed to the molecular functionalization of pillar[5]arenes with π-conjugated, sterically bulky triarylamine (Ar3 N) as an electron donor and triarylborane (Ar3 B) as an acceptor. This crucial design enabled investigations of the chiroptical properties, including circular dichroism (CD) and circularly polarized luminescence (CPL) in the solid state. The intramolecular charge transfer (ICT) nature in P5BN afforded an interesting thermochromic shift of the emission over a wide temperature range.

11.
Angew Chem Int Ed Engl ; 59(8): 3156-3160, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31670891

RESUMEN

New symmetric and unsymmetric B,N,B-doped benzo[4]helicenes 3-6 a/b have been achieved in good yields, using a three-step process, starting from N(tolyl)3 in a highly divergent manner (7 examples). A borinic acid functionalized 1,4-B,N-anthracene 1 was found to display unprecedented reactivity, acting as a convenient and highly effective precursor for selective formation of bromo-substituted B,N,B-benzo[4]helicenes 2 a/2 b via intramolecular borylation and sequential B-Mes bond cleavage in the presence of BBr3 . Subsequent reaction of 2 a/2 b with Ar-Li provided a highly effective toolbox for the preparation of symmetrically/unsymmetrically functionalized B,N,B-helicenes. Their high photoluminescence quantum yields along with the small ΔEST suggest their potential as thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs).

13.
Adv Mater ; 36(5): e2307420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37697624

RESUMEN

Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.

14.
Sci Adv ; 9(19): eadh1434, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37172084

RESUMEN

Stable deep blue multiresonance emitters with small full width at half maximum (FWHM) are attractive for wide color-gamut organic light-emitting diodes (OLEDs). However, the steric repulsion from the spatially close hydrogens would twist the multiresonance skeletons, causing spectral broadening and molecular instability issues. Here, we strategically introduce a mesitylboron locking unit into a carbazole-embedded multiresonance model emitter, alleviating the hydrogen repulsions and also strengthening the para-positioned weak carbon-nitrogen bond in anionic states. An emission peaking at 452 nm with an FWHM of merely 14 nm and nearly BT.2020 blue chromaticity coordinates are obtained in toluene, affording a high maximum external quantum efficiency of 33.9% in a sensitizing device. Moreover, an impressive LT97 (time to decay to 97% of the initial luminance) of 178 hours at a constant current density of 12 mA/cm2 was achieved in a stable device with a small y coordinate of 0.057, nearly 20 times longer than the model emitter with even a substantially red-shifted emission.

15.
Adv Mater ; 35(7): e2209396, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435993

RESUMEN

The pursuit of ideal narrowband yellow multiple resonance (MR) emitters is hampered by the mutual constraints of effective spectral redshift and maintaining a small full width at half maximum (FWHM) value. Here, a novel multiple fusion molecular design strategy is reported to break this trade-off. Compared with the selected narrowband parent core, the specific multiple MR effects in target molecules can simultaneously extend the π-conjugation length, increase the rigidity of the structure, and reduce the vibrational frequency. Proof-of-the-concept emitters BN-DICz and DBN-ICz show bright yellowish green to yellow emissions in dilute toluene solutions with peaks at 533-542 nm and extremely small FWHMs of ≤20 nm. Notably, BN-DICz-based electroluminescent device exhibits excellent efficiencies of 37.4%, 136.6 cd A-1 , and 119.2 lm W-1 with an FWHM of merely 23 nm, representing the best performance for yellow MR organic light-emitting diodes.

16.
RSC Adv ; 13(18): 12509-12517, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37091623

RESUMEN

Because rare-earth elements are scarce, expensive, and unsustainable, it is of great significance to develop rare-earth-free (even metal-free) luminescent materials as phosphors for LEDs. Here, a graphitic-C3N4 (g-C3N4) derivative containing some heptazines merged with phenyls has been synthesized via thermal polymerization of melamine and quinazoline-2,4(1H,3H)-dione at an optimal mole ratio of 18 : 1. In comparison with g-C3N4 synthesized from melamine only, the photoluminescent (PL) emission colour changed from blue to green, the maximum emission wavelength (λ em,max) changed from 467 nm to 508 nm, and the PL quantum yield (PLQY) increased from 8.0% to 24.0%. It was further purified via vacuum sublimation, and a product with yellowish green emission (λ em,max = 517 nm) and PLQY up to 45.5% was obtained. This sublimated product had high thermal stability and low thermal quenching; its thermal decomposition temperature was as high as 527 °C, and its relative PL emission intensity at 100 °C was 90.8% of that at 20 °C. Excited by blue light chips (λ em,max ≈ 460 nm), cold, neutral and warm white LEDs can be fabricated using the sublimated product and orange-emitting (Sr,Ba)3SiO5:Eu2+ as phosphors. The good performances of these white LEDs (for example, the CIE coordinates, color rendering index and correlated color temperature were (0.31, 0.33), 84.4 and 6577 K, respectively) suggest that the low-efficiency blue-emitting g-C3N4 had been successfully converted into a high-efficiency metal-free quasi-green phosphor.

17.
ACS Appl Mater Interfaces ; 15(22): 27018-27025, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232351

RESUMEN

Emitters with narrowband emissions are essential to improve the color purity of organic light-emitting diodes (OLEDs). Boron difluoride (BF) derivatives have preliminarily exhibited small full width at half-maximum (FWHM) values in electroluminescent devices, which, however, still face formidable challenges in recycling triplet excitons and realizing full-color emissions covering the whole visible spectra. Here, a systematic molecular engineering on the aza-fused aromatic emitting core and peripheral substitutions is made, affording a family of full-color BF emitters spanning from blue (461 nm) to red (635 nm), with high photoluminescence quantum yields of >90% and a small FWHM of 0.12 eV. The device architectures are delicately manipulated to form effective thermally activated sensitizing emissions, first affording the highest maximum external quantum efficiency of >20% for BF-based OLEDs with negligible efficiency roll-off.

18.
Nat Commun ; 14(1): 2394, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100785

RESUMEN

The pursuit of ideal short-delayed thermally activated delayed fluorescence (TADF) emitters is hampered by the mutual exclusion of a small singlet-triplet energy gap (ΔEST) and a large oscillator strength (f). Here, by attaching an multiresonance-acceptor onto a sterically-uncrowded donor, we report TADF emitters bearing hybrid electronic excitations with a main donor-to-acceptor long-range (LR) and an auxiliary bridge-phenyl short-range (SR) charge-transfer characters, balancing a small ΔEST and a large f. Moreover, the incorporation of dual equivalent multiresonance-acceptors is found to double the f value without affecting the ΔEST. A large radiative decay rate over an order of magnitude higher than the intersystem crossing (ISC) rate, and a decent reverse ISC rate of >106 s-1 are simultaneously obtained in one emitter, leading to a short delayed-lifetime of ~0.88 µs. The corresponding organic light-emitting diode exhibits a record-high maximum external quantum efficiency of 40.4% with alleviated efficiency roll-off and extended lifetime.

19.
Chem Sci ; 14(4): 979-986, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36755724

RESUMEN

Boron- and nitrogen (BN)-fused polycyclic aromatic frameworks with amine-directed formation of B-N covalent bonds have the potential to form a new family of facile-synthesis multi-resonance luminophores, which, however, still face imperative challenges in diversifying the molecular design to narrow the emission bandwidth and tune the emission colors. Here, we demonstrate a strategic implementation of B-N bond containing polycyclo-heteraborin multi-resonance emitters with wide-range colors from deep-blue to yellow-green (442-552 nm), small full-width at half-maxima of only 19-28 nm and high photoluminescence efficiencies, by stepwise modifying the basic para B-π-B structures with heteroatoms. The corresponding electroluminescent devices show superior maximum external quantum efficiencies with an exceptional low-efficiency roll-off, retaining 21.0%, 23.6% and 22.1% for the sky-blue, green and yellow-green devices at a high luminance of 5000 cd m-2, respectively.

20.
Chem Sci ; 13(19): 5622-5630, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694343

RESUMEN

High-efficiency and stable deep-blue bottom-emitting organic light-emitting diodes with Commission Internationale de l'Eclairage y coordinates (CIE y s) < 0.08 remain exclusive in the literature owing to the high excited-state energy of the emitters. Here, we propose the utilization of narrowband emitters to lower the excited-state energy for stable deep-blue devices by taking advantage of their high color purity. Two proof-of-concept deep-blue emitters with nitrogen-containing spiro-configured polycyclic frameworks are thereafter developed to introduce a multi-resonance effect for narrow emissions and sterically orthogonal configurations for alleviated molecular interactions. Both emitters show bright ultrapure deep-blue emissions with an extremely small full-width-at-half-maxima of only 18-19 nm, which can be maintained even in heavily doped films. Small CIE y s of 0.054 and 0.066 are therefore measured from the corresponding electroluminescence devices with peak energies of only 2.77 eV (448 nm) and 2.74 eV (453 nm), accounting for the remarkably long LT80s (lifetime to 80% of the initial luminance) of 18 900 and 43 470 hours at 100 cd m-2, respectively. Furthermore, by adopting a thermally activated delayed fluorescence sensitizer, impressive maximum external quantum efficiencies of 25% and 31% are recorded respectively, representing state-of-the-art performances for deep-blue devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA