Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837102

RESUMEN

In recent years, the rapid progress of Internet of Things (IoT) solutions has offered an immense opportunity for the collection and dissemination of health records in a central data platform. Electrocardiogram (ECG), a fast, easy, and non-invasive method, is generally employed in the evaluation of heart conditions that lead to heart ailments and the identification of heart diseases. The deployment of IoT devices for arrhythmia classification offers many benefits such as remote patient care, continuous monitoring, and early recognition of abnormal heart rhythms. However, it is challenging to diagnose and manually classify arrhythmia as the manual diagnosis of ECG signals is a time-consuming process. Therefore, the current article presents the automated arrhythmia classification using the Farmland Fertility Algorithm with Hybrid Deep Learning (AAC-FFAHDL) approach in the IoT platform. The proposed AAC-FFAHDL system exploits the hyperparameter-tuned DL model for ECG signal analysis, thereby diagnosing arrhythmia. In order to accomplish this, the AAC-FFAHDL technique initially performs data pre-processing to scale the input signals into a uniform format. Further, the AAC-FFAHDL technique uses the HDL approach for detection and classification of arrhythmia. In order to improve the classification and detection performance of the HDL approach, the AAC-FFAHDL technique involves an FFA-based hyperparameter tuning process. The proposed AAC-FFAHDL approach was validated through simulation using the benchmark ECG database. The comparative experimental analysis outcomes confirmed that the AAC-FFAHDL system achieves promising performance compared with other models under different evaluation measures.


Asunto(s)
Aprendizaje Profundo , Internet de las Cosas , Humanos , Granjas , Arritmias Cardíacas/diagnóstico , Algoritmos , Electrocardiografía/métodos
2.
Sensors (Basel) ; 21(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810578

RESUMEN

This paper presents a technique for the detection of keratoconus via the construction of a 3D eye images from 2D frontal and lateral eye images. Keratoconus is a disease that affects the cornea. Normal case eyes have a round-shaped cornea, while patients who suffer from keratoconus have a cone-shaped cornea. Early diagnosis can decrease the risk of eyesight loss. Our aim is to create a method of fully automated keratoconus detection using digital-camera frontal and lateral eye images. The presented technique accurately determines case severity. Geometric features are extracted from 2D images to estimate depth information used to build 3D images of the cornea. The proposed methodology is easy to implement and time-efficient. 2D images of the eyes (frontal and lateral) are used as input, and 3D images from which the curvature of the cornea can be detected are produced as output. Our method involves two main steps: feature extraction and depth calculation. Machine learning from the 3D images dataset Dataverse, specifically taken by the Cornea/Anterior Segment OCT SS-1000 (CASIA), was performed. Results show that the method diagnosed the four stages of keratoconus (severe, moderate, mild, and normal) with an accuracy of 97.8%, as compared to manual diagnosis done by medical experts.


Asunto(s)
Queratocono , Córnea/diagnóstico por imagen , Topografía de la Córnea , Humanos , Queratocono/diagnóstico por imagen , Aprendizaje Automático
3.
Sensors (Basel) ; 21(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670035

RESUMEN

In this paper, we introduce new concepts in the machine translation paradigm. We treat the corpus as a database of frequent word sets. A translation request triggers association rules joining phrases present in the source language, and phrases present in the target language. It has to be noted that a sequential scan of the corpus for such phrases will increase the response time in an unexpected manner. We introduce the pre-processing of the bilingual corpus through proposing a data structure called Corpus-Trie (CT) that renders a bilingual parallel corpus in a compact data structure representing frequent data items sets. We also present algorithms which utilize the CT to respond to translation requests and explore novel techniques in exhaustive experiments. Experiments were performed on specific language pairs, although the proposed method is not restricted to any specific language. Moreover, the proposed Corpus-Trie can be extended from bilingual corpora to accommodate multi-language corpora. Experiments indicated that the response time of a translation request is logarithmic to the count of unrepeated phrases in the original bilingual corpus (and thus, the Corpus-Trie size). In practical situations, 5-20% of the log of the number of the nodes have to be visited. The experimental results indicate that the BLEU score for the proposed CT system increases with the size of the number of phrases in the CT, for both English-Arabic and English-French translations. The proposed CT system was demonstrated to be better than both Omega-T and Apertium in quality of translation from a corpus size exceeding 1,600,000 phrases for English-Arabic translation, and 300,000 phrases for English-French translation.

4.
Pers Ubiquitous Comput ; 25(1): 129-140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32837499

RESUMEN

Face detection perceives great importance in surveillance paradigm and security paradigm areas. Face recognition is the technique to identify a person identity after face detection. Extensive research has been done on these topics. Another important research problem is to detect concealed faces, especially in high-security places like airports or crowded places like concerts and shopping centres, for they may prevail security threat. Also, in order to help effectively in preventing the spread of Coronavirus, people should wear masks during the pandemic especially in the entrance to hospitals and medical facilities. Surveillance systems in medical facilities should issue warnings against unmasked people. This paper presents a novel technique for concealed face detection based on complexion detection to challenge a concealed face assumption. The proposed algorithm first determine of the existence of a human being in the surveillance scene. Head and shoulder contour will be detected. The face will be clustered to cluster patches. Then determination of presence or absent of human skin will be determined. We proposed a hybrid approach that combines normalized RGB (rgb) and the YCbCr space color. This technique is tested on two datasets; the first one contains 650 images of skin patches. The second dataset contains 800 face images. The algorithm achieves an average detection rate of 97.51% for concealed faces. Also, it achieved a run time comparable with existing state-of-the-art concealed face detection systems that run in real time.

5.
Transp Res Part A Policy Pract ; 141: 116-129, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33024357

RESUMEN

For next-generation smart cities, small UAVs (also known as drones) are vital to incorporate in airspace for advancing the transportation systems. This paper presents a review of recent developments in relation to the application of UAVs in three major domains of transportation, namely; road safety, traffic monitoring and highway infrastructure management. Advances in computer vision algorithms to extract key features from UAV acquired videos and images are discussed along with the discussion on improvements made in traffic flow analysis methods, risk assessment and assistance in accident investigation and damage assessments for bridges and pavements. Additionally, barriers associated with the wide-scale deployment of UAVs technology are identified and countermeasures to overcome these barriers are discussed, along with their implications.

6.
J Neurosci Methods ; 409: 110183, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834145

RESUMEN

BACKGROUND: The significance of diagnosing illnesses associated with brain cognitive and gait freezing phase patterns has led to a recent surge in interest in the study of gait for mental disorders. A more precise and effective way to characterize and classify many common gait problems, such as foot and brain pulse disorders, can improve prognosis evaluation and treatment options for Parkinson patients. Nonetheless, the primary clinical technique for assessing gait abnormalities at the moment is visual inspection, which depends on the subjectivity of the observer and can be inaccurate. RESEARCH QUESTION: This study investigates whether it is possible to differentiate between gait brain disorder and the typical walking pattern using machine learning driven supervised learning techniques and data obtained from inertial measurement unit sensors for brain, hip and leg rehabilitation. METHOD: The proposed method makes use of the Daphnet freezing of Gait Data Set, consisted of 237 instances with 9 attributes. The method utilizes machine learning and feature reduction approaches in leg and hip gait recognition. RESULTS: From the obtained results, it is concluded that among all classifiers RF achieved highest accuracy as 98.9 % and Perceptron achieved lowest i.e. 70.4 % accuracy. While utilizing LDA as feature reduction approach, KNN, RF and NB also achieved promising accuracy and F1-score in comparison with SVM and LR classifiers. SIGNIFICANCE: In order to distinguish between the different gait disorders associated with brain tissues freezing/non-freezing and normal walking gait patterns, it is shown that the integration of different machine learning algorithms offers a viable and prospective solution. This research implies the need for an impartial approach to support clinical judgment.

7.
Biomimetics (Basel) ; 9(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275449

RESUMEN

Customer churn prediction (CCP) implies the deployment of data analytics and machine learning (ML) tools to forecast the churning customers, i.e., probable customers who may remove their subscriptions, thus allowing the companies to apply targeted customer retention approaches and reduce the customer attrition rate. This predictive methodology improves active customer management and provides enriched satisfaction to the customers and also continuous business profits. By recognizing and prioritizing the relevant features, such as usage patterns and customer collaborations, and also by leveraging the capability of deep learning (DL) algorithms, the telecom companies can develop highly robust predictive models that can efficiently anticipate and mitigate customer churn by boosting retention approaches. In this background, the current study presents the Archimedes optimization algorithm-based feature selection with a hybrid deep-learning-based churn prediction (AOAFS-HDLCP) technique for telecom companies. In order to mitigate high-dimensionality problems, the AOAFS-HDLCP technique involves the AOAFS approach to optimally choose a set of features. In addition to this, the convolutional neural network with autoencoder (CNN-AE) model is also involved for the churn prediction process. Finally, the thermal equilibrium optimization (TEO) technique is employed for hyperparameter selection of the CNN-AE algorithm, which, in turn, helps in achieving improved classification performance. A widespread experimental analysis was conducted to illustrate the enhanced performance of the AOAFS-HDLCP algorithm. The experimental outcomes portray the high efficiency of the AOAFS-HDLCP approach over other techniques, with a maximum accuracy of 94.65%.

8.
Cancers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36900381

RESUMEN

Cancer is a deadly disease caused by various biochemical abnormalities and genetic diseases. Colon and lung cancer have developed as two major causes of disability and death in human beings. The histopathological detection of these malignancies is a vital element in determining the optimal solution. Timely and initial diagnosis of the sickness on either front diminishes the possibility of death. Deep learning (DL) and machine learning (ML) methods are used to hasten such cancer recognition, allowing the research community to examine more patients in a much shorter period and at a less cost. This study introduces a marine predator's algorithm with deep learning as a lung and colon cancer classification (MPADL-LC3) technique. The presented MPADL-LC3 technique aims to properly discriminate different types of lung and colon cancer on histopathological images. To accomplish this, the MPADL-LC3 technique employs CLAHE-based contrast enhancement as a pre-processing step. In addition, the MPADL-LC3 technique applies MobileNet to derive feature vector generation. Meanwhile, the MPADL-LC3 technique employs MPA as a hyperparameter optimizer. Furthermore, deep belief networks (DBN) can be applied for lung and color classification. The simulation values of the MPADL-LC3 technique were examined on benchmark datasets. The comparison study highlighted the enhanced outcomes of the MPADL-LC3 system in terms of different measures.

9.
Biomimetics (Basel) ; 8(7)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999176

RESUMEN

Recently, the usage of remote sensing (RS) data attained from unmanned aerial vehicles (UAV) or satellite imagery has become increasingly popular for crop classification processes, namely soil classification, crop mapping, or yield prediction. Food crop classification using RS images (RSI) is a significant application of RS technology in agriculture. It involves the use of satellite or aerial imagery to identify and classify different types of food crops grown in a specific area. This information can be valuable for crop monitoring, yield estimation, and land management. Meeting the criteria for analyzing these data requires increasingly sophisticated methods and artificial intelligence (AI) technologies provide the necessary support. Due to the heterogeneity and fragmentation of crop planting, typical classification approaches have a lower classification performance. However, the DL technique can detect and categorize crop types effectively and has a stronger feature extraction capability. In this aspect, this study designed a new remote sensing imagery data analysis using the marine predators algorithm with deep learning for food crop classification (RSMPA-DLFCC) technique. The RSMPA-DLFCC technique mainly investigates the RS data and determines the variety of food crops. In the RSMPA-DLFCC technique, the SimAM-EfficientNet model is utilized for the feature extraction process. The MPA is applied for the optimal hyperparameter selection process in order to optimize the accuracy of SimAM-EfficientNet architecture. MPA, inspired by the foraging behaviors of marine predators, perceptively explores hyperparameter configurations to optimize the hyperparameters, thereby improving the classification accuracy and generalization capabilities. For crop type detection and classification, an extreme learning machine (ELM) model can be used. The simulation analysis of the RSMPA-DLFCC technique is performed on two benchmark datasets. The extensive analysis of the results portrayed the higher performance of the RSMPA-DLFCC approach over existing DL techniques.

10.
Comput Intell Neurosci ; 2022: 6162445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814569

RESUMEN

Biomedical engineering is the application of the principles and problem-solving methods of engineering to biology along with medicine. Computation intelligence is the study of design of intelligent agents which are systems acting perceptively. The computation intelligence paradigm offers more advantages to the enhancement and maintenance of the field of biomedical engineering. Liver cancer is the major reason of mortality worldwide. Earlier-stage diagnosis and treatment might increase the survival rate of liver cancer patients. Manual recognition of the cancer tissue is a time-consuming and difficult task. Hence, a computer-aided diagnosis (CAD) is employed in decision making procedures for accurate diagnosis and effective treatment. In contrast to classical image-dependent "semantic" feature evaluation from human expertise, deep learning techniques could learn feature representation automatically from sample images using convolutional neural network (CNN). This study introduces a Hybrid Rider Optimization with Deep Learning Driven Biomedical Liver Cancer Detection and Classification (HRO-DLBLCC) model. The proposed HRO-DLBLCC model majorly focuses on the identification of liver cancer in the medical images. To do so, the proposed HRO-DLBLCC model employs preprocessing in two stages, namely, Gabor filtering (GF) based noise removal and watershed transform based segmentation. In addition, the proposed HRO-DLBLCC model involves NAdam optimizer with DenseNet-201 based feature extractor to generate an optimal set of feature vectors. Finally, the HRO algorithm with recurrent neural network-long short-term memory (RNN-LSTM) model is applied for liver cancer classification, in which the hyperparameters of the RNN-LSTM model are tuned by the use of HRO algorithm. The HRO-DLBLCC model is experimentally validated and compared with existing models. The experimental results assured the promising performance of the HRO-DLBLCC model over recent approaches.


Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Algoritmos , Diagnóstico por Computador/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Redes Neurales de la Computación
11.
Cancers (Basel) ; 14(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36551644

RESUMEN

Medical imaging has attracted growing interest in the field of healthcare regarding breast cancer (BC). Globally, BC is a major cause of mortality amongst women. Now, the examination of histopathology images is the medical gold standard for cancer diagnoses. However, the manual process of microscopic inspections is a laborious task, and the results might be misleading as a result of human error occurring. Thus, the computer-aided diagnoses (CAD) system can be utilized for accurately detecting cancer within essential time constraints, as earlier diagnosis is the key to curing cancer. The classification and diagnosis of BC utilizing the deep learning algorithm has gained considerable attention. This article presents a model of an improved bald eagle search optimization with a synergic deep learning mechanism for breast cancer diagnoses using histopathological images (IBESSDL-BCHI). The proposed IBESSDL-BCHI model concentrates on the identification and classification of BC using HIs. To do so, the presented IBESSDL-BCHI model follows an image preprocessing method using a median filtering (MF) technique as a preprocessing step. In addition, feature extraction using a synergic deep learning (SDL) model is carried out, and the hyperparameters related to the SDL mechanism are tuned by the use of the IBES model. Lastly, long short-term memory (LSTM) was utilized to precisely categorize the HIs into two major classes, such as benign and malignant. The performance validation of the IBESSDL-BCHI system was tested utilizing the benchmark dataset, and the results demonstrate that the IBESSDL-BCHI model has shown better general efficiency for BC classification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA