Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 105: 86-101, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32423851

RESUMEN

γ-Secretase is an intramembrane aspartyl-protease catalyzing the final step in the regulated intramembrane proteolysis of a large number of single-span type-1 transmembrane proteins. The most extensively studied substrates are the amyloid-ß precursor protein (APP) and the NOTCH receptors. An important technique for the characterization of interactions and conformational changes enabling γ-secretase to perform hydrolysis within the confines of the membrane are molecular dynamics simulations on different time and length scales. Here, we review structural and dynamical features of γ-secretase and its substrates including flexibility descriptions from simulations and experiments. We address (1) conformational sampling of apo-enzyme and unbound substrates (exemplified for APP, NOTCH1 and the apparent non-substrate integrin ß1), (2) substrate recruitment pathways, (3) conformational changes associated with the formation of the recognition complex, (4) cleavage-site unfolding upon interaction with the enzyme's active site, (5) substrate processing after endoproteolysis, and (6) inhibition and modulation of γ-secretase. We conclude with still open questions and suggest further investigations in order to advance our understanding on how γ-secretase selects and processes substrates. This knowledge will improve the ability to better target substrates selectively for therapeutic applications.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Humanos
2.
Biophys J ; 116(11): 2103-2120, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31130234

RESUMEN

Intramembrane cleavage of the ß-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Simulación de Dinámica Molecular , Proteolisis , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Mutación , Dominios Proteicos
3.
iScience ; 23(12): 101775, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33294784

RESUMEN

Ectodomain (EC) shedding defines the proteolytic removal of a membrane protein EC and acts as an important molecular switch in signaling and other cellular processes. Using tumor necrosis factor (TNF)α as a model substrate, we identify a non-canonical shedding activity of SPPL2a, an intramembrane cleaving aspartyl protease of the GxGD type. Proline insertions in the TNFα transmembrane (TM) helix strongly increased SPPL2a non-canonical shedding, while leucine mutations decreased this cleavage. Using biophysical and structural analysis, as well as molecular dynamic simulations, we identified a flexible region in the center of the TNFα wildtype TM domain, which plays an important role in the processing of TNFα by SPPL2a. This study combines molecular biology, biochemistry, and biophysics to provide insights into the dynamic architecture of a substrate's TM helix and its impact on non-canonical shedding. Thus, these data will provide the basis to identify further physiological substrates of non-canonical shedding in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA