Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Res ; 67(8): 3801-8, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17440094

RESUMEN

Celecoxib inhibits proliferation and induces apoptosis in human tumors, but the molecular mechanisms for these processes are poorly understood. In this study, we evaluated the ability of celecoxib to induce toxicity in head and neck squamous cell carcinomas (HNSCC) and explored the relationships between celecoxib-induced cell cycle inhibition and toxicity in HNSCC. Celecoxib inhibited the proliferation of UM-SCC-1 and UM-SCC-17B cells both in vitro and in vivo, accompanied by G(1) phase cell cycle arrest and apoptosis. Celecoxib induced p21(waf1/cip1) at the transcriptional level independent of wild-type p53 function, leading to decreased expression of cyclin D1 and hypophosphorylation of Rb, with subsequent marked downstream decreases in nuclear E2F-1 protein expression and E2F transactivating activity by luciferase reporter assay. Cell cycle phase-specific cytometric sorting showed that celecoxib induced clonogenic toxicity preferentially to cells within the S phase greater than G(1) and G(2) phases. Levels of p21(waf1/cip1) and cyclin D1 protein were reduced in the S phase compared with the G(1) and G(2) phases, suggesting a possible protective role for p21(waf1/cip1) expression in celecoxib toxicity. In conclusion, we show that celecoxib has marked antiproliferative activity against head and neck cancer cells through transcriptional induction of p21(waf1/cip1) and G(1) phase accumulation leading to S phase-specific clonogenic toxicity. We additionally show that a profound inhibition of nuclear E2F function provides a possible mechanism for this S phase-specific toxicity.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Fase G1/efectos de los fármacos , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Pirazoles/farmacología , Fase S/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Celecoxib , Procesos de Crecimiento Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción E2F/antagonistas & inhibidores , Factores de Transcripción E2F/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Ratones Desnudos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Activación Transcripcional/efectos de los fármacos
2.
Cancer Res ; 67(13): 6392-9, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17616699

RESUMEN

Thiol antioxidants, including N-acetyl-L-cysteine (NAC), are widely used as modulators of the intracellular redox state. We investigated the hypothesis that NAC-induced reactive oxygen species (ROS) signaling perturbs cellular proliferation by regulating the cell cycle regulatory protein cyclin D1 and the ROS scavenging enzyme Mn-superoxide dismutase (MnSOD). When cultured in media containing NAC, mouse fibroblasts showed G(1) arrest with decreased cyclin D1 protein levels. The absence of a NAC-induced G(1) arrest in fibroblasts overexpressing cyclin D1 (or a nondegradable mutant of cyclin D1-T286A) indicates that cyclin D1 regulates this G(1) arrest. A delayed response to NAC exposure was an increase in both MnSOD protein and activity. NAC-induced G(1) arrest is exacerbated in MnSOD heterozygous fibroblasts. Results from electron spin resonance spectroscopy and flow cytometry measurements of dihydroethidine fluorescence showed an approximately 2-fold to 3-fold increase in the steady-state levels of superoxide (O(2)(*-)) in NAC-treated cells compared with control. Scavenging of O(2)(*-) with Tiron reversed the NAC-induced G(1) arrest. These results show that an O(2)(*-) signaling pathway regulates NAC-induced G(1) arrest by decreasing cyclin D1 protein levels and increasing MnSOD activity.


Asunto(s)
Acetilcisteína/farmacología , Ciclina D1/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Animales , Dicarbetoxidihidrocolidina/análogos & derivados , Dicarbetoxidihidrocolidina/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Fibroblastos/metabolismo , Fase G1 , Humanos , Ratones , Células 3T3 NIH , Oxidación-Reducción , Especies Reactivas de Oxígeno , Transducción de Señal
3.
Cancer Biol Ther ; 6(1): 30-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17172818

RESUMEN

Sulindac sulfide and sulindac sulfone have demonstrated anti-neoplastic and chemo-preventive activity against various human tumors, but few studies have examined the relative effectiveness of these drugs against squamous cell carcinoma of the head and neck (SCCHN). These compounds are metabolites of the nonsteroidal anti-inflammatory drug sulindac and differ in their ability to inhibit cyclooxygenase-2 (COX-2) enzyme function. Sulindac sulfide (the sulindac metabolite with COX-2 inhibitory function) demonstrated strong cell growth inhibition as measured by MTT and growth assays in UM-SCC-1 and SCC-25 cells, while sulindac sulfone had only moderate effect. Growth inhibition by sulindac sulfide was associated with a significant increase in percent G cells and activation of caspase-3. Sulindac sulfide induced expression of p21wafl/cipl in a dose-dependent fashion, decreased cyclin D1 protein levels, and increased Rb hypophosphorylation. p21waf1/cip1 protein levels increased without a significant increase in wild-type p53, suggesting that sulindac sulfide induces a p53-independent pathway regulating p2lwafl/ciP1 protein levels in SCCHN. Sulindac sulfide also induced dose-dependent expression of PPAR-gamma. In contrast, sulindac sulfone did not significantly alter apoptosis, cell cycle distribution or G1 checkpoint protein expression at doses below 200 microM. These results demonstrate the differential activity of sulindac metabolites and support the hypothesis that sulindac sulfide induced perturbations in SCCHN cellular proliferation could be regulated both by p21waf1/cip1-dependent cytostatic and caspase-dependent cytotoxic pathways.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Sulindac/análogos & derivados , Apoptosis , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , PPAR gamma/antagonistas & inhibidores , Sulindac/metabolismo , Sulindac/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
4.
Cancer Res ; 63(9): 2109-17, 2003 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-12727827

RESUMEN

The hypothesis that intracellular oxidation/reduction (redox) reactions regulate the G(0)-G(1) to S-phase transition in the mouse embryonic fibroblast cell cycle was investigated. Intracellular redox state was modulated with a thiol-antioxidant, N-acetyl-L-cysteine (NAC), and cell cycle progression was measured using BrdUrd pulse-chase and flow cytometric analysis. Treatment with NAC for 12 h resulted in an approximately 6-fold increase in intracellular low-molecular-weight thiols and a decrease in the MFI of an oxidation-sensitive probe, dihydrofluorescein diacetate, indicating a shift in the intracellular redox state toward a more reducing environment. NAC-induced alterations in redox state caused selective delays in progression from G(0)-G(1) to S phase in serum-starved cells that were serum stimulated to reenter the cell cycle as well as to inhibit progression from G(1) to S phase in asynchronous cultures with no significant alterations in S phase, and G(2)+M transits. NAC treatment also showed a 70% decrease in cyclin D1 protein levels and a 3-4-fold increase in p27 protein levels, which correlated with decreased retinoblastoma protein phosphorylation. Cells released from the NAC treatment showed a transient increase in dihydrofluorescein fluorescence and oxidized glutathione content between 0 and 8 h after release, indicating a shift in intracellular redox state to a more oxidizing environment. These changes in redox state were followed by an increase in cyclin D1, a decrease in p27, retinoblastoma protein hyperphosphorylation and subsequent entry into S phase by 8-12 h after the removal of NAC. These results support the hypothesis that a redox cycle within the mammalian cell cycle might provide a mechanistic link between the metabolic processes early in G(1) and the activation of G(1)-regulatory proteins in preparation for the entry of cells into S phase.


Asunto(s)
Fibroblastos/citología , Fase G1/fisiología , Fase S/fisiología , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Embrión de Mamíferos , Fibroblastos/metabolismo , Citometría de Flujo , Fase G1/efectos de los fármacos , Ratones , Oxidación-Reducción , Fase S/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/fisiología
5.
Antioxid Redox Signal ; 7(5-6): 711-8, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15890017

RESUMEN

Reactive oxygen species (ROS) and ROS signaling have been implicated in a variety of human pathophysiological conditions that involve aberrant cellular proliferation, particularly cancer. We hypothesize that intracellular redox state differentially affects cell-cycle progression in nonmalignant versus malignant cells. The thiol antioxidant, N-acetyl-L-cysteine (NAC), was used to alter intracellular redox state in nonmalignant human breast epithelial (MCF-10A) and breast cancer cells (MCF-7 and MDA-MB-231). Treatment of cells with NAC resulted in significant augmentation of intracellular small-molecular-weight thiols, glutathione and cysteine. In addition, NAC treatment decreased oxidation of a prooxidant-sensitive dye in MCF-10A cells, but not in MDA-MB-231 and MCF-7 cells. NAC-induced shifts in intracellular redox state toward a more reducing environment caused G(1) delays in MCF-10A cells without causing any significant changes in MCF-7 and MDA-MB-231 cell-cycle progression. NAC treatment of MCF-10A (but not MCF-7 and MDA-MB-231) was accompanied by a decrease in cyclin D1 and an increase in p27 protein levels, which correlated with increased retinoblastoma protein hypophosphorylation. These results show differential redox control of progression from G(1) to S in nonmalignant versus malignant cells and support the hypothesis that loss of a redox control of the cell cycle could contribute to aberrant proliferation seen in cancer cells.


Asunto(s)
Antioxidantes/farmacología , Neoplasias de la Mama/patología , Mama/citología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Fase G1/efectos de los fármacos , Compuestos de Sulfhidrilo/farmacología , Acetilcisteína/farmacología , Mama/patología , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Oxidación-Reducción/efectos de los fármacos
6.
Mol Biol Cell ; 24(17): 2655-67, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864709

RESUMEN

Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily-specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability.


Asunto(s)
Microtúbulos/química , Mitosis/fisiología , Proteínas Oncogénicas/metabolismo , Aurora Quinasa A/metabolismo , Línea Celular Tumoral , Segregación Cromosómica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica , Células HeLa , Humanos , Microtúbulos/metabolismo , Mitosis/genética , Proteínas Oncogénicas/genética , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
7.
Mol Cell Biol ; 33(3): 622-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23184663

RESUMEN

RhoA is overexpressed in human cancer and contributes to aberrant cell motility and metastatic progression; however, regulatory mechanisms controlling RhoA activity in cancer are poorly understood. Neuroepithelial transforming gene 1 (Net1) is a RhoA guanine nucleotide exchange factor that is overexpressed in human cancer. It encodes two isoforms, Net1 and Net1A, which cycle between the nucleus and plasma membrane. Net1 proteins must leave the nucleus to activate RhoA, but mechanisms controlling the extranuclear localization of Net1 isoforms have not been described. Here, we show that Rac1 activation causes relocalization of Net1 isoforms outside the nucleus and stimulates Net1A catalytic activity. These effects do not require Net1A catalytic activity, its pleckstrin homology domain, or its regulatory C terminus. We also show that Rac1 activation protects Net1A from proteasome-mediated degradation. Replating cells on collagen stimulates endogenous Rac1 to relocalize Net1A, and inhibition of proteasome activity extends the duration and magnitude of Net1A relocalization. Importantly, we demonstrate that Net1A, but not Net1, is required for cell spreading on collagen, myosin light chain phosphorylation, and focal adhesion maturation. These data identify the first physiological mechanism controlling the extranuclear localization of Net1 isoforms. They also demonstrate a previously unrecognized role for Net1A in regulating cell adhesion.


Asunto(s)
Movimiento Celular , Adhesiones Focales/metabolismo , Proteínas Oncogénicas/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Femenino , Expresión Génica , Humanos , Ratones , Cadenas Ligeras de Miosina/metabolismo , Proteínas Oncogénicas/análisis , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/metabolismo , Proteína de Unión al GTP rac1/genética
8.
PLoS One ; 7(5): e37639, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22629436

RESUMEN

Short, non-encoded oligo(A), oligo(U), or A/U tails can impact mRNA stability in kinetoplastid mitochondria. However, a comprehensive picture of the relative effects of these modifications in RNA stability is lacking. Furthermore, while the U-preferring exoribonuclease TbRND acts on U-tailed gRNAs, its role in decay of uridylated mRNAs has only been cursorily investigated. Here, we analyzed the roles of mRNA 3' tail composition and TbRND in RNA decay using cells harbouring single or double knockdown of TbRND and the KPAP1 poly(A) polymerase. Analysis of mRNA abundance and tail composition reveals dramatic and transcript-specific effects of adenylation and uridylation on mitochondrial RNAs. Oligo(A) and A-rich tails can stabilize a proportion of edited and never-edited RNAs. However, non-tailed RNAs are not inherently unstable, implicating additional stability determinants and/or spatial segregation of sub-populations of a given RNA in regulation of RNA decay. Oligo(U) tails, which have been shown to contribute to decay of some never-edited RNAs, are not universally destabilizing. We also show that RNAs display very different susceptibility to uridylation in the absence of KPAP1, a factor that may contribute to regulation of decay. Finally, 3' tail composition apparently impacts the ability of an RNA to be edited.


Asunto(s)
Exorribonucleasas/genética , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN/genética , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Células Cultivadas , Exorribonucleasas/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Edición de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Trypanosoma brucei brucei/metabolismo
9.
J Biol Chem ; 284(17): 11590-600, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19254949

RESUMEN

Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/fisiología , Secuencia de Aminoácidos , Animales , Cromatografía por Intercambio Iónico/métodos , Clonación Molecular , Citoplasma/metabolismo , Dimerización , Humanos , Cinética , Metiltransferasas/química , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/metabolismo , Interferencia de ARN , Homología de Secuencia de Aminoácido , Factores de Tiempo , Trypanosoma brucei brucei
10.
Mol Carcinog ; 46(10): 857-64, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17415779

RESUMEN

This study was performed to compare the relative antineoplastic activity of 10 different non-steroidal anti-inflammatory drugs (NSAIDs) in clinical use, and to investigate the underlying mechanisms of this activity in a squamous cell carcinoma of the head and neck model (SCCHN). A standard 5-day MTT assay was used to calculate IC(50) values in UM-SCC-1 cells for 10 NSAIDs, including celecoxib, rofecoxib, sulindac sulfide, sulindac sulfone, indomethacin, ketoprofen, flurbiprofen, naproxen, piroxicam, and aspirin. Celecoxib, a COX-2 specific inhibitor, was by far the most potent NSAID, with an IC(50) of 39.9 +/- 1.1 microM, followed by sulindac sulfide (116.5 +/- 2.34 microM). Celecoxib and sulindac sulfide also induced more activation of caspase-3 than any other NSAID. Cell cycle analysis showed that celecoxib and sulindac sulfide both induced a 3-fold increase in G(1) phase distribution, and this correlated with strong induction of p21(waf1/cip1), inhibition of cyclin D1, and hypophosphorylation of Rb. Celecoxib and sulindac sulfide treatment induced strong downstream inhibition of E2F transactivating activity as determined by a luciferase reporter assay. These data demonstrate the wide range of activity of various NSAID agents, and reveal a mechanism of action through cell cycle inhibition and induction of apoptosis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/farmacología , Fase G1/efectos de los fármacos , Apoptosis , Celecoxib , Factores de Transcripción E2F/antagonistas & inhibidores , Humanos , Pirazoles/farmacología , Sulfonamidas/farmacología , Sulindac/análogos & derivados , Sulindac/farmacología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA