Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(30): 25602-14, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22645139

RESUMEN

In the yeast Saccharomyces cerevisiae, key regulatory enzymes of gluconeogenesis such as fructose-1,6-bisphosphatase are degraded via the ubiquitin proteasome system when cells are replenished with glucose. Polyubiquitination is carried out by the Gid complex, a multisubunit ubiquitin ligase that consists of seven different Gid (glucose-induced degradation-deficient) proteins. Under gluconeogenic conditions the E3 ligase is composed of six subunits (Gid1/Vid30, Gid2/Rmd5, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10). Upon the addition of glucose the regulatory subunit Gid4/Vid24 appears, binds to the Gid complex, and triggers ubiquitination of fructose-1,6-bisphosphatase. All seven proteins are essential for this process; however, nothing is known about the arrangement of the subunits in the complex. Interestingly, each Gid protein possesses several remarkable motifs (e.g. SPRY, LisH, CTLH domains) that may play a role in protein-protein interaction. We, therefore, generated altered versions of individual Gid proteins by deleting or mutating these domains and performed co-immunoprecipitation experiments to analyze the interaction between distinct subunits. Thus, we were able to create an initial model of the topology of this unusual E3 ubiquitin ligase.


Asunto(s)
Gluconeogénesis/fisiología , Modelos Moleculares , Complejos Multienzimáticos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Ubiquitina-Proteína Ligasas , Ubiquitinación/fisiología , Secuencias de Aminoácidos , Glucosa/química , Glucosa/genética , Glucosa/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Biochem Biophys Res Commun ; 397(3): 447-52, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20513352

RESUMEN

Fructose-1,6-bisphosphatase (FBPase) is a key regulatory enzyme of gluconeogenesis. In the yeast Saccharomyces cerevisiae, it is only expressed when cells are grown in medium with nonfermentable carbon sources. Addition of glucose to cells leads to inactivation of FBPase and degradation via the ubiquitin-proteasome system. Polyubiquitination of FBPase is carried out by the Gid complex, a multi-subunit ubiquitin ligase. Using tandem affinity purification and subsequent mass spectrometry we identified the Hsp70 chaperone Ssa1 as a novel interaction partner of FBPase. Studies with the temperature-sensitive mutant ssa1-45(ts) showed that Ssa1 is essential for polyubiquitination of FBPase by the Gid complex. Moreover, we show that degradation of an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is also affected in ssa1-45(ts) cells demonstrating that Ssa1 plays a general role in elimination of gluconeogenic enzymes.


Asunto(s)
Fructosa-Bifosfatasa/metabolismo , Gluconeogénesis , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
FEBS Lett ; 592(19): 3286-3294, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30136317

RESUMEN

Glucose consumption via glycolysis and its biosynthesis via gluconeogenesis are central reciprocal pathways controlled by a set of different enzymes. In the yeast Saccharomyces cerevisiae, expression of gluconeogenic enzymes is induced when cells are devoid of glucose. Availability of glucose immediately leads to inactivation and rapid degradation of these enzymes via the ubiquitin proteasome system. Polyubiquitination is carried out by the Gid complex, a multisubunit RING E3 ligase that constitutively consists of six different proteins. Upon addition of glucose to the medium, the substrate recognition subunit Gid4 appears within minutes and triggers ubiquitination of the gluconeogenic enzymes. Here, we show that Gid4 is tightly regulated on the transcriptional and protein level to ensure proper adjustment of gluconeogenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Transporte Vesicular/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Glucosa/metabolismo , Glucosa/farmacología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Transporte Vesicular/genética
4.
FEBS Lett ; 592(15): 2515-2524, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29790175

RESUMEN

Precise regulation of cellular processes is essential for life. Regarding proteins, many regulatory mechanisms were explored over the years, such as posttranslational modifications (e.g., phosphorylation), enzyme activation or inhibition by small molecules, and modulation of protein-protein interactions. Complete removal of a protein via proteolysis as a regulatory mechanism, however, was denied for a long time, mainly due to economical considerations. Scientists could not believe that a protein which is synthesized at the expense of a lot of energy could be destroyed again. Here, we discuss the landmark discoveries and the use of yeast as a eukaryotic model organism that finally paved the way for our current understanding of proteolysis as an essential regulatory principle in the cell.


Asunto(s)
Fenómenos Fisiológicos Celulares , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas/metabolismo , Proteolisis , Animales , Procesos de Crecimiento Celular , Retículo Endoplásmico/fisiología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional
5.
PLoS One ; 10(3): e0120342, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793641

RESUMEN

In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.


Asunto(s)
Desarrollo Embrionario , Prosencéfalo/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Neurogénesis/genética , Filogenia , Prosencéfalo/embriología , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/química , Xenopus laevis
6.
FEBS Lett ; 585(24): 3856-61, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22044534

RESUMEN

The two major antagonistic pathways of carbon metabolism in cells, glycolysis and gluconeogenesis, are tightly regulated. In the eukaryotic model organism Saccharomyces cerevisiae the switch from gluconeogenesis to glycolysis is brought about by proteasomal degradation of the gluconeogenic enzyme fructose-1,6-bisphosphatase. The ubiquitin ligase responsible for polyubiquitylation of fructose-1,6-bisphosphatase is the Gid complex. This complex consists of seven subunits of which subunit Gid2/Rmd5 contains a RING finger domain providing E3 ligase activity. Here we identify an additional subunit containing a degenerated RING finger, Gid9/Fyv10. This subunit binds to Gid2/Rmd5. A mutation in the degenerated RING finger of Gid9/Fyv10 abolishes polyubiquitylation and degradation of three enzymes specific for gluconeogenesis.


Asunto(s)
Proteolisis , Dominios RING Finger , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA