Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 111(11): 111102, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074069

RESUMEN

We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how zwei-dreibein gravity unifies previous "3D massive gravity" models and extends them, in the context of the AdS/CFT correspondence, to allow for a positive central charge consistent with bulk unitarity.

2.
Phys Rev E ; 108(1-1): 014312, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37583168

RESUMEN

The information implicitly represented in the state of physical systems allows for their analysis using analytical techniques from statistical mechanics and information theory. This approach has been successfully applied to complex networks, including biophysical systems such as virus-host protein-protein interactions and whole-brain models in health and disease, drawing inspiration from quantum statistical physics. Here we propose a general mathematical framework for modeling information dynamics on complex networks, where the internal node states are vector valued, allowing each node to carry multiple types of information. This setup is relevant for various biophysical and sociotechnological models of complex systems, ranging from viral dynamics on networks to models of opinion dynamics and social contagion. Instead of focusing on node-node interactions, we shift our attention to the flow of information between network configurations. We uncover fundamental differences between widely used spin models on networks, such as voter and kinetic dynamics, which cannot be detected through classical node-based analysis. We illustrate the mathematical framework further through an exemplary application to epidemic spreading on a low-dimensional network. Our model provides an opportunity to adapt powerful analytical methods from quantum many-body systems to study the interplay between structure and dynamics in interconnected systems.

3.
Phys Rev E ; 108(2-1): 024303, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723790

RESUMEN

The contact process is an emblematic model of a nonequilibrium system, containing a phase transition between inactive and active dynamical regimes. In the epidemiological context, the model is known as the susceptible-infected-susceptible model, and it is widely used to describe contagious spreading. In this work, we demonstrate how accurate and efficient representations of the full probability distribution over all configurations of the contact process on a one-dimensional chain can be obtained by means of matrix product states (MPSs). We modify and adapt MPS methods from many-body quantum systems to study the classical distributions of the driven contact process at late times. We give accurate and efficient results for the distribution of large gaps, and illustrate the advantage of our methods over Monte Carlo simulations. Furthermore, we study the large deviation statistics of the dynamical activity, defined as the total number of configuration changes along a trajectory, and investigate quantum-inspired entropic measures, based on the second Rényi entropy.

4.
Phys Rev E ; 105(4-1): 044303, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590605

RESUMEN

The susceptible-infected (SI) model is the most basic of all compartmental models used to describe the spreading of information through a population. Despite its apparent simplicity, the analytic solution of this model on networks is still lacking. We address this problem here using a novel formulation inspired by the mathematical treatment of many-body quantum systems. This allows us to organize the time-dependent expectation values for the state of individual nodes in terms of contributions from subgraphs of the network. We compute these contributions systematically and find a set of symmetry relations among subgraphs of differing topologies. We use our novel approach to compute the spreading of information on three different sample networks. The exact solution, which matches with Monte Carlo simulations, visibly departs from the mean-field results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA