Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
iScience ; 27(8): 110567, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39184446

RESUMEN

Replication origin assembly is a pivotal step in chromosomal DNA replication. In this process, the ORC complex binds DNA and, together with the CDC6 and CDT1, promotes the loading of the MCM helicase. Chemicals targeting origin assembly might be useful to sensitize highly proliferative cancer cells. However, identifying such compounds is challenging due to the multistage nature of this process. Here, using Xenopus laevis egg extract we set up a high-throughput screening to isolate MCM chromatin loading inhibitors, which led to the identification of NSC-95397 as a powerful inhibitor of replication origin assembly that targets CDC6 protein and promotes its degradation. Using systems developed to test selective drug-induced lethality we show that NSC-95397 triggers cell death both in human cells and Xenopus embryos that have higher proliferative ability. These findings demonstrate the effectiveness of molecules disrupting DNA replication processes in targeting hyperproliferating cells, highlighting their potential as anti-cancer molecules.

2.
Biomed Pharmacother ; 177: 116991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906021

RESUMEN

Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 µM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pinocitosis , Pinocitosis/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación
3.
Nat Commun ; 15(1): 7366, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191730

RESUMEN

The lysine-specific histone demethylase 1 A (LSD1) is involved in antitumor immunity; however, its role in shaping CD8 + T cell (CTL) differentiation and function remains largely unexplored. Here, we show that pharmacological inhibition of LSD1 (LSD1i) in CTL in the context of adoptive T cell therapy (ACT) elicits phenotypic and functional alterations, resulting in a robust antitumor immunity in preclinical models in female mice. In addition, the combination of anti-PDL1 treatment with LSD1i-based ACT eradicates the tumor and leads to long-lasting tumor-free survival in a melanoma model, complementing the limited efficacy of the immune or epigenetic therapy alone. Collectively, these results demonstrate that LSD1 modulation improves antitumoral responses generated by ACT and anti-PDL1 therapy, providing the foundation for their clinical evaluation.


Asunto(s)
Linfocitos T CD8-positivos , Histona Demetilasas , Inmunoterapia Adoptiva , Ratones Endogámicos C57BL , Animales , Histona Demetilasas/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Inmunoterapia Adoptiva/métodos , Ratones , Femenino , Linfocitos T CD8-positivos/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Línea Celular Tumoral , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Humanos , Melanoma/inmunología , Melanoma/terapia
4.
Proc Natl Acad Sci U S A ; 107(50): 21535-40, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21106756

RESUMEN

Epigenetic alterations in the pattern of DNA and histone modifications play a crucial role in cancer development. Analysis of patient samples, however, is hampered by technical limitations in the study of chromatin structure from pathology archives that usually consist of heavily fixed, paraffin-embedded material. Here, we present a methodology [pathology tissue-ChIP (PAT-ChIP)] to extract and immunoprecipitate chromatin from paraffin-embedded patient samples up to several years old. In a pairwise comparison with canonical ChIP, PAT-ChIP showed a high reproducibility of results for several histone marks and an identical ability to detect dynamic changes in chromatin structure upon pharmacological treatment. Finally, we showed that PAT-ChIP can be coupled with high-throughput sequencing (PAT-ChIP-Seq) for the genome-wide analysis of distinct chromatin modifications. PAT-ChIP therefore represents a versatile procedure and diagnostic tool for the analysis of epigenetic alterations in cancer and potentially other diseases.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Animales , Humanos , Neoplasias/genética , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Fijación del Tejido/métodos
5.
Nat Commun ; 14(1): 7086, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925537

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells. Inhibition of C-rich (teloC) dilncRNAs with antisense oligonucleotides leads to DNA replication stress responses, increased genomic instability, and apoptosis induction selectively in ALT cells. Cell death is dependent on DNA replication and is increased by DNA replication stress. Mechanistically, teloC dilncRNA inhibition reduces RAD51 and 53BP1 recruitment to telomeres, boosts the engagement of BIR machinery, and increases C-circles and telomeric sister chromatid exchanges, without increasing telomeric non-S phase synthesis. These results indicate that teloC dilncRNA is necessary for a coordinated recruitment of DDR factors to ALT telomeres and it is essential for ALT cancer cells survival.


Asunto(s)
Telomerasa , Homeostasis del Telómero , Homeostasis del Telómero/genética , Replicación del ADN , ARN , Supervivencia Celular/genética , Telómero/genética , Telómero/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
6.
Sci Adv ; 9(48): eadh2726, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019906

RESUMEN

Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.


Asunto(s)
Trastorno del Espectro Autista , Factores de Transcripción TFIII , Factores de Transcripción TFII , Ratones , Animales , Humanos , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , Proteómica , Conducta Social , Fenotipo , Ratones Transgénicos , Diferenciación Celular/genética , Histona Demetilasas/genética , Factores de Transcripción TFIII/genética , Factores de Transcripción TFII/genética
7.
Eur J Med Chem ; 247: 115022, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36549114

RESUMEN

After over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC50 values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level. Compound 5e provided a huge antiproliferative activity (nanomolar IC50 values) against both haematological and solid cancer cell lines. In leukaemia U937 cells, the hydroxamate 5d and the 2'-aminoanilide 8f induced remarkable cell death after 48 h, with 76% and 100% pre-G1 phase arrest, respectively, showing a stronger effect with respect to SAHA and MS-275 used as reference compounds. In U937 cells, the highest dose- and time-dependent cytodifferentiation was obtained by the 2'-aminoanilide 8d (up to 35% of CD11c positive/propidium iodide negative cells at 5 µM for 48 h). The same 8d and the hydroxamates 5d and 5e were the most effective in inducing p21 protein expression in the same cell line. Mechanistically, 5d, 5e, 8d and 8f increased mRNA expression of p21, BAX and BAK, downregulated cyclin D1 and BCL-2 and modulated pro- and anti-apoptotic microRNAs towards apoptosis induction. Finally, 5e strongly arrested proliferation in nine different haematological cancer cell lines, with dual-digit nanomolar potency towards MV4-11, Kasumi-1, and NB4, being more potent than mocetinostat, used as reference drug.


Asunto(s)
Antineoplásicos , MicroARNs , Neoplasias , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Ácidos Hidroxámicos/farmacología , Apoptosis , Piridinas/farmacología , Histona Desacetilasa 1
8.
ChemMedChem ; 16(6): 989-999, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33220015

RESUMEN

Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs. Among them, the nicotinic hydroxamate 11 d displayed sub-nanomolar potency (IC50 : 0.5 nM) and selectivity up to 34 000 times that of HDAC4 and from 100 to 1300 times that of all the other tested HDAC isoforms. The 2'-aminoanilides were class I-selective HDAC inhibitors, generally more potent against HDAC3, with the nicotinic anilide 12 d being the most effective (IC50HDAC3 =0.113 µM). When tested in U937 leukemia cells, the hydroxamates 9 e, 11 c, and 11 d blocked over 80 % of cells in G2/M phase, whereas the anilides did not alter cell-cycle progress. In the same cell line, the hydroxamate 11 c and the anilide 10 b induced about 30 % apoptosis, and the anilide 12 c displayed about 40 % cytodifferentiation. Finally, the most potent compounds in leukemia cells 9 b, 11 c, 10 b, 10 e, and 12 c were also tested in K562, HCT116, and A549 cancer cells, displaying antiproliferative IC50 values at single-digit to sub-micromolar level.


Asunto(s)
Anilidas/farmacología , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Piridinas/farmacología , Anilidas/síntesis química , Anilidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Estructura Molecular , Piridinas/química , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
9.
Sci Transl Med ; 13(623): eabf7036, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878824

RESUMEN

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs. LSD1 genetic targeting further strengthens the role of LSD1 in GBM TIC maintenance. GBM TIC plasticity supports their adaptation and survival under a plethora of environmental stresses, including nutrient deficiency and proteostasis perturbation. By mimicking these stresses in vitro, we found that LSD1 inhibition hampers the induction of the activating transcription factor 4 (ATF4), the master regulator of the integrated stress response (ISR). The resulting aberrant ISR sensitizes GBM TICs to stress-induced cell death, hampering tumor aggressiveness. Functionally, LSD1i interferes with LSD1 scaffolding function and prevents its interaction with CREBBP, a critical ATF4 activator. By disrupting the interaction between CREBBP and LSD1-ATF4 axis, LSD1 inhibition prevents GBM TICs from overcoming stress and sustaining GBM progression. The effectiveness of the LSD1 inhibition in preclinical models shown here places a strong rationale toward its clinical translation for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Factor de Transcripción Activador 4/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Demetilasas/metabolismo , Humanos , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas/patología
10.
Pharmacol Res ; 62(1): 18-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20219679

RESUMEN

Histone deacetylase inhibitors (HDACi) represent a novel class of targeted drugs which alter the acetylation status of several cellular proteins. These agents, modulating both chromatin structure through histone acetylation, and the activity of several non-histone substrates, are at the same time able to determine changes in gene transcription and to induce a plethora of biological effects ranging from cell death induction, to differentiation, angiogenesis inhibition or modulation of immune responses. The impressive anticancer activity observed in both in vitro and in vivo cancer models, together with their preferential effect on cancer cells, have led to a huge effort into the identification and development of HDACi with different characteristics. To date, several clinical trials of HDACi conducted in solid tumors and hematological malignancies have shown a preferential clinical efficacy of these drugs in hematological malignancies, and in particular in cutaneous T-cell lymphoma (CTCL), peripheral T-cell lymphoma (PTCL), Hodgkin lymphoma (HL) and myeloid malignancies. Several agents are also beginning to be tested in combination therapies, either as chemo sensitizing agents in association with standard chemotherapy drugs or in combination with DNA methyltransferase inhibitors (DNMTi) in the context of the so-called "epigenetic therapies", aimed to revert epigenetic alterations found in cancer cells. Herein, we will review HDACi data in hematological malignancies questioning the molecular basis of observed clinical responses, and highlighting some of the concerns raised on the use of these drugs for cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Epigénesis Genética , Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Ensayos Clínicos como Asunto , Neoplasias Hematológicas/enzimología , Neoplasias Hematológicas/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Estructura Molecular , Resultado del Tratamiento
11.
Bioorg Med Chem ; 18(5): 1844-53, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20153204

RESUMEN

We have recently reported CDK inhibitors based on the 6-substituted pyrrolo[3,4-c]pyrazole core structure. Improvement of inhibitory potency against multiple CDKs, antiproliferative activity against cancer cell lines and optimization of the physico-chemical properties led to the identification of highly potent compounds. Compound 31 (PHA-793887) showed good efficacy in the human ovarian A2780, colon HCT-116 and pancreatic BX-PC3 carcinoma xenograft models and was well tolerated upon daily treatments by iv administration. It was identified as a drug candidate for clinical evaluation in patients with solid tumors.


Asunto(s)
Antineoplásicos/química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Pirroles/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes/metabolismo , Células HCT116 , Humanos , Inyecciones Intravenosas , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazoles/síntesis química , Pirazoles/farmacocinética , Pirroles/síntesis química , Pirroles/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Sci Adv ; 6(15): eaax2746, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32284990

RESUMEN

The histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors. In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells, triggering degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knockout, but targeting LSD1 sensitizes them to physiological doses of RA without altering of PML-RAR levels, and extends survival of leukemic mice upon RA treatment. The combination of RA with LSD1 inhibition (or knockout) is also effective in other non-APL, acute myeloid leukemia (AML) cells. Nonenzymatic activities of LSD1 are essential to block differentiation, while RA with targeting of LSD1 releases a differentiation gene expression program, not strictly dependent on changes in histone H3K4 methylation. Integration of proteomic/epigenomic/mutational studies showed that LSD1 inhibitors alter the recruitment of LSD1-containing complexes to chromatin, inhibiting the interaction between LSD1 and the transcription factor GFI1.


Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Histona Demetilasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Tretinoina/farmacología , Catálisis , Diferenciación Celular/genética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Células Tumorales Cultivadas
13.
ChemMedChem ; 15(7): 643-658, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32003940

RESUMEN

LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring. Further fragments obtained by chemical manipulation applied on the TCP scaffold (compounds 4 a-i) were also prepared. When tested against LSD1, most of 1 and 3 exhibited IC50 values in the low nanomolar range, with 1 e and 3 a,d,f,g being also the most selective respect to monoamine oxidases. In MV4-11 AML and NB4 APL cells compounds 3 were the most potent, displaying up to sub-micromolar cell growth inhibition against both cell lines (3 a) or against NB4 cells (3 c). The most potent compounds in cellular assays were also able to induce the expression of LSD1 target genes, such as GFI-1b, ITGAM, and KCTD12, as functional read-out for LSD1 inhibition. Mouse and human intrinsic clearance data highlighted the high metabolic stability of compounds 3 a, 3 d and 3 g. Further studies will be performed on the new compounds 3 a and 3 c to assess their anticancer potential in different cancer contexts.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Histona Demetilasas/antagonistas & inhibidores , Tranilcipromina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Relación Estructura-Actividad , Tranilcipromina/síntesis química , Tranilcipromina/química
14.
Mol Autism ; 11(1): 88, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33208191

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26-28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams-Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms. In the above-indicated interval at 7q11.23, defined as WBS critical region, several genes, such as GTF2I, BAZ1B, CLIP2 and EIF4H, emerged as critical for their role in the pathogenesis of WBS and 7Dup both from mouse models and human studies. METHODS: We performed a high-throughput screening of 1478 compounds, including central nervous system agents, epigenetic modulators and experimental substances, on patient-derived cortical glutamatergic neurons differentiated from our cohort of induced pluripotent stem cell lines (iPSCs), monitoring the transcriptional modulation of WBS interval genes, with a special focus on GTF2I, in light of its overriding pathogenic role. The hits identified were validated by measuring gene expression by qRT-PCR and the results were confirmed by western blotting. RESULTS: We identified and selected three histone deacetylase inhibitors (HDACi) that decreased the abnormal expression level of GTF2I in 7Dup cortical glutamatergic neurons differentiated from four genetically different iPSC lines. We confirmed this effect also at the protein level. LIMITATIONS: In this study, we did not address the molecular mechanisms whereby HDAC inhibitors act on GTF2I. The lead compounds identified will now need to be advanced to further testing in additional models, including patient-derived brain organoids and mouse models recapitulating the gene imbalances of the 7q11.23 microduplication, in order to validate their efficacy in rescuing phenotypes across multiple functional layers within a translational pipeline towards clinical use. CONCLUSIONS: These results represent a unique opportunity for the development of a specific class of compounds for treating 7Dup and other forms of intellectual disability and autism.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Cerebral/patología , Duplicación Cromosómica/genética , Cromosomas Humanos Par 7/genética , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/farmacología , Neuronas/patología , Factores de Transcripción TFII/genética , Trastorno del Espectro Autista/genética , Cromosomas Humanos Par 7/metabolismo , Variaciones en el Número de Copia de ADN/genética , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción TFII/metabolismo , Transcripción Genética/efectos de los fármacos
15.
ACS Med Chem Lett ; 11(5): 754-759, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435381

RESUMEN

Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. KDM1A represents an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, we and others have also identified reversible inhibitors. Herein we reported the discovery of 5-imidazolylthieno[3,2-b]pyrroles, a new series of KDM1A inhibitors endowed with picomolar inhibitory potency, active in cells and efficacious after oral administration in murine leukemia models.

16.
Eur J Med Chem ; 152: 283-297, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29730191

RESUMEN

We designed new 3-arylthio- and 3-aroyl-1H-indole derivatives 3-22 bearing a heterocyclic ring at position 5, 6 or 7 of the indole nucleus. The 6- and 7-heterocyclyl-1H-indoles showed potent inhibition of tubulin polymerization, binding of colchicine to tubulin and growth of MCF-7 cancer cells. Compounds 13 and 19 inhibited a panel of cancer cells and the NCI/ADR-RES multidrug resistant cell line at low nanomolar concentrations. Compound 13 at 50 nM induced 77% G2/M in HeLa cells, and at 20 nM caused 50% stable arrest of mitosis. As an inhibitor of HepG2 cells (IC50 = 20 nM), 13 was 4-fold superior to 19. Compound 13 was a potent inhibitor of the human U87MG glioblastoma cells at nanomolar concentrations, being nearly one order of magnitude superior to previously reported arylthioindoles. The present results highlight 13 as a robust scaffold for the design of new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/química , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
17.
BMC Bioinformatics ; 8 Suppl 1: S5, 2007 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-17430572

RESUMEN

BACKGROUND: Microarrays have been widely used for the analysis of gene expression and several commercial platforms are available. The combined use of multiple platforms can overcome the inherent biases of each approach, and may represent an alternative that is complementary to RT-PCR for identification of the more robust changes in gene expression profiles. In this paper, we combined statistical and functional analysis for the cross platform validation of two oligonucleotide-based technologies, Affymetrix (AFFX) and Applied Biosystems (ABI), and for the identification of differentially expressed genes. RESULTS: In this study, we analysed differentially expressed genes after treatment of an ovarian carcinoma cell line with a cell cycle inhibitor. Treated versus control RNA was analysed for expression of 16425 genes represented on both platforms. We assessed reproducibility between replicates for each platform using CAT plots, and we found it high for both, with better scores for AFFX. We then applied integrative correlation analysis to assess reproducibility of gene expression patterns across studies, bypassing the need for normalizing expression measurements across platforms. We identified 930 genes as differentially expressed on AFFX and 908 on ABI, with approximately 80% common to both platforms. Despite the different absolute values, the range of intensities of the differentially expressed genes detected by each platform was similar. ABI showed a slightly higher dynamic range in FC values, which might be associated with its detection system. 62/66 genes identified as differentially expressed by Microarray were confirmed by RT-PCR. CONCLUSION: In this study we present a cross-platform validation of two oligonucleotide-based technologies, AFFX and ABI. We found good reproducibility between replicates, and showed that both platforms can be used to select differentially expressed genes with substantial agreement. Pathway analysis of the affected functions identified themes well in agreement with those expected for a cell cycle inhibitor, suggesting that this procedure is appropriate to facilitate the identification of biologically relevant signatures associated with compound treatment. The high rate of confirmation found for both common and platform-specific genes suggests that the combination of platforms may overcome biases related to probe design and technical features, thereby accelerating the identification of trustworthy differentially expressed genes.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Neoplasias/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Interpretación Estadística de Datos , Femenino , Perfilación de la Expresión Génica/instrumentación , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Future Med Chem ; 9(11): 1161-1174, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28722470

RESUMEN

BACKGROUND: Histone lysine demethylases (KDMs) are well-recognized targets in oncology drug discovery. They function at the post-translation level controlling chromatin conformation and gene transcription. KDM1A is a flavin adenine dinucleotide-dependent amine oxidase, overexpressed in several tumor types, including acute myeloid leukemia, neuroblastoma and non-small-cell lung cancer. Among the many known monoamine oxidase inhibitors screened for KDM1A inhibition, tranylcypromine emerged as a moderately active hit, which irreversibly binds to the flavin adenine dinucleotide cofactor. MATERIAL & METHODS: The KDM1A inhibitors 5a-w were synthesized and tested in vitro and in vivo. The biochemical potency was determined, modulation of target in cells was demonstrated on KDM1A-dependent genes and the anti-clonogenic activity was performed in murine acute promyelocytic Leukemia (APL) blasts. An in vivo efficacy experiment was conducted using an established murine promyelocytic leukemia model. RESULTS: We report a new series of tranylcypromine derivatives substituted on the cyclopropyl moiety, endowed with high potency in both biochemical and cellular assays. CONCLUSION: The most interesting derivative (5a) significantly improved survival rate after oral administration in a murine model of promyelocitic leukemia.


Asunto(s)
Antineoplásicos/síntesis química , Histona Demetilasas/antagonistas & inhibidores , Leucemia Promielocítica Aguda/tratamiento farmacológico , Tranilcipromina/análogos & derivados , Tranilcipromina/síntesis química , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Leucemia Promielocítica Aguda/patología , Ratones , Relación Estructura-Actividad , Tranilcipromina/farmacocinética , Tranilcipromina/farmacología
19.
ACS Med Chem Lett ; 8(5): 521-526, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28523104

RESUMEN

We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative 10 inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation. Compound 10 minimally affected the proliferation of normal blood cells, indicating that it may be a promising agent to overcome broad tyrosine kinase inhibitor resistance in relapsed/refractory CML patients. Compound 10 significantly decreased CML proliferation by inducing G2/M phase arrest and apoptosis via a mitochondria-dependent pathway. ARDAP 10 augmented the cytotoxic effects of IM in human CML cells. Compound 10 represents a robust lead compound to develop tubulin inhibitors with potential as novel treatments for CML.

20.
J Med Chem ; 60(5): 1693-1715, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28186757

RESUMEN

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.1021.acs.jmedchem.6b01018 ) the identification of thieno[3,2-b]pyrrole-5-carboxamides as novel reversible inhibitors of KDM1A, whose preliminary exploration resulted in compound 2 with biochemical IC50 = 160 nM. We now report the structure-guided optimization of this chemical series based on multiple ligand/KDM1A-CoRest cocrystal structures, which led to several extremely potent inhibitors. In particular, compounds 46, 49, and 50 showed single-digit nanomolar IC50 values for in vitro inhibition of KDM1A, with high selectivity in secondary assays. In THP-1 cells, these compounds transcriptionally affected the expression of genes regulated by KDM1A such as CD14, CD11b, and CD86. Moreover, 49 and 50 showed a remarkable anticlonogenic cell growth effect on MLL-AF9 human leukemia cells.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Lisina/química , Pirroles/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Histona Demetilasas , Humanos , Concentración 50 Inhibidora , Pirroles/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA