Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(19): e108375, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375000

RESUMEN

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Asunto(s)
Receptores Mitogénicos/metabolismo , SARS-CoV-2/metabolismo , Animales , Sitios de Unión/fisiología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Glicosilación , Células HEK293 , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica/fisiología , Células Vero , Internalización del Virus
2.
Glycobiology ; 33(8): 637-650, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37486674

RESUMEN

One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays. The tumor cell lines were grouped into three subsets by their canonical E-selectin ligand status (sialyl-Lewis A and X +/+, -/+, -/-) and their adhesiveness was compared after enzymatic, pharmacologic, chemical treatment or antibody blockade of the tumor cells or endothelial cells, respectively. Tumor cells were also screened regarding their glycosyltransferase expression profile. We found that although E-selectin and terminal α2,3-sialic acid largely determined firm adhesion, adhesive events did not exclusively depend on the presence of sialyl-Lewis A and/or sialyl-Lewis X. Nevertheless, two of the three sialyl-Lewis A/X-/- tumor cells additionally or fully depended on vascular cell adhesion molecule-1 for firm adhesion. The significance of O-GalNAc- and N-glycans for adhesion varied remarkably among the tumor cells. The sialyl-Lewis A/X+/+ subset showed glycoprotein-independent adhesion, suggesting a role of glycolipids as well. All sialyl-Lewis A/X-/- tumor cells lacked FUT3 and FUT7 expression as opposed to sialyl-Lewis A/X+/+ or -/+ cell lines. In summary, the glycans on tumor cells mediating endothelial adhesion are not as much restricted to sialyl-Lewis A /X as previously assumed. The present study specifically suggests α2,3-linked sialic acid, O-GalNAc glycans, glycosphingolipids, and FUT3/FUT7 products as promising targets for future studies.


Asunto(s)
Selectina E , Células Endoteliales , Humanos , Selectina E/metabolismo , Células Endoteliales/metabolismo , Adhesión Celular , Ácido N-Acetilneuramínico , Antígeno Sialil Lewis X , Polisacáridos , Oligosacáridos/química
3.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572915

RESUMEN

Microsatellite instability (MSI) is a molecular phenotype due to a deficient DNA mismatch repair (dMMR). In colorectal cancer (CRC), dMMR/MSI is associated with several clinical and histopathological features, influences prognosis, and is a predictive factor of response to therapy. In daily practice, dMMR/MSI profiles are identified by immunohistochemistry and/or multiplex PCR. The Thomsen-Friedenreich (TF) antigen was previously found to be a potential single marker to identify MSI-high gastric cancers. Therefore, in this study, we aimed to disclose a possible association between TF expression and MSI status in CRC. Furthermore, we evaluated the relationship between TF expression and other clinicopathological features, including patient survival. We evaluated the expression of the TF antigen in a cohort of 25 MSI-high and 71 microsatellite stable (MSS) CRCs. No association was observed between the expression of the TF antigen and MSI-high status in CRC. The survival analysis revealed that patients with MSI-high CRC showed improved survival when the TF antigen was expressed. This finding holds promise as it indicates the potential use of the TF antigen as a biomarker of better prognosis in MSI-high CRCs that should be validated in an independent and larger CRC cohort.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/análisis , Neoplasias Colorrectales/patología , Inestabilidad de Microsatélites , Colon/patología , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Recto/patología , Estudios Retrospectivos
4.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979110

RESUMEN

In the scenario of personalized medicine, targeted therapies are currently the focus of cancer drug development. These drugs can block the growth and spread of tumor cells by interfering with key molecules involved in malignancy, such as receptor tyrosine kinases (RTKs). MET and Recepteur d'Origine Nantais (RON), which are RTKs frequently overactivated in gastric cancer, are glycoprotein receptors whose activation have been shown to be modulated by the cellular glycosylation. In this work, we address the role of sialylation in gastric cancer therapy using an innovative 3D high-throughput cell culture methodology that mimics better the in vivo tumor features. We evaluate the response to targeted treatment of glycoengineered gastric cancer cell models overexpressing the sialyltransferases ST3GAL4 or ST3GAL6 by subjecting 3D spheroids to the tyrosine kinase inhibitor crizotinib. We show here that 3D spheroids of ST3GAL4 or ST3GAL6 overexpressing MKN45 gastric cancer cells are less affected by the inhibitor. In addition, we disclose a potential compensatory pathway via activation of the Insulin Receptor upon crizotinib treatment. Our results suggest that cell sialylation, in addition of being involved in tumor progression, could play a critical role in the response to tyrosine kinase inhibitors in gastric cancer.


Asunto(s)
Crizotinib/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/metabolismo , Sialiltransferasas/metabolismo
5.
Biol Chem ; 399(7): 661-672, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29894296

RESUMEN

Triple negative breast cancer (TNBC) is a major global public health problem. The lack of targeted therapy and the elevated mortality evidence the need for better knowledge of the tumor biology. Hypoxia and aberrant glycosylation are associated with advanced stages of malignancy, tumor progression and treatment resistance. Importantly, serum deprivation regulates the invasive phenotype and favors TNBC cell survival. However, in TNBC, the role of hypoxia and serum deprivation in the regulation of glycosylation remains largely unknown. The effects of hypoxia and serum deprivation on the expression of glycosyltransferases and glycan profile were evaluated in the MDA-MB-231 cell line. We showed that the overexpression of HIF-1α was accompanied by acquisition of epithelial-mesenchimal transition features. Significant upregulation of fucosyl- and sialyltransferases involved in the synthesis of tumor-associated carbohydrate antigens was observed together with changes in fucosylation and sialylation detected by Aleuria aurantia lectin and Sambucus nigra agglutinin lectin blots. Bioinformatic analysis further indicated a mechanism by which HIF-1α can regulate ST3GAL6 expression and the relationship within the intrinsic characteristics of TNBC tumors. In conclusion, our results showed the involvement of hypoxia and serum deprivation in glycosylation profile regulation of TNBC cells triggering breast cancer aggressive features and suggesting glycosylation as a potential diagnostic and therapeutic target.


Asunto(s)
Hipoxia/metabolismo , Polisacáridos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Supervivencia Celular , Humanos , Hipoxia/sangre , Polisacáridos/sangre , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/sangre , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
6.
Cell Immunol ; 333: 46-57, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29576316

RESUMEN

Tumour metastasis is the main cause of cancer related deaths. Metastasis is an intricate multi-step process that requires the acquisition of several cancer cell features, including the modulation of tumour cell migration, adhesion, invasion, and immune evasion. Changes in the cellular glycosylation are associated with malignant transformation of cancer cells, tumour progression and ultimately, metastasis formation. Glycans have major impact on cellular signalling and on the regulation of tumour cell-cell adhesion and cell-matrix interaction. Glycans drive the interplay between the cancer cells and the tumour microenvironment. In this review, we summarize the roles of glycan alterations in tumour progression, such as acquisition of oncogenic features due to modulation of receptor tyrosine kinases, proteoglycans, cadherins and integrins. We also highlight the importance of key glycan binding proteins such as selectins, siglecs and galectins, which are pivotal in the modulation of immune response. An overview on glycans as cancer biomarkers is also presented.


Asunto(s)
Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neoplasias/inmunología , Neoplasias/patología , Polisacáridos/inmunología , Animales , Biomarcadores de Tumor/inmunología , Adhesión Celular/inmunología , Adhesión Celular/fisiología , Progresión de la Enfermedad , Glicosilación , Humanos
7.
Molecules ; 23(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380716

RESUMEN

Cellular glycosylation plays a pivotal role in several molecular mechanisms controlling cell⁻cell recognition, communication, and adhesion. Thus, aberrant glycosylation has a major impact on the acquisition of malignant features in the tumor progression of patients. To mimic these in vivo features, an innovative high-throughput 3D spheroid culture methodology has been developed for gastric cancer cells. The assessment of cancer cell spheroids' physical characteristics, such as size, morphology and solidity, as well as the impact of glycosylation inhibitors on spheroid formation was performed applying automated image analysis. A detailed evaluation of key glycans and glycoproteins displayed by the gastric cancer spheroids and their counterpart cells cultured under conventional 2D conditions was performed. Our results show that, by applying 3D cell culture approaches, the model cell lines represented the differentiation features observed in the original tumors and the cellular glycocalix underwent striking changes, displaying increased expression of cancer-associated glycan antigens and mucin MUC1, ultimately better simulating the glycosylation phenotype of the gastric tumor.


Asunto(s)
Carcinoma/metabolismo , Técnicas de Cultivo de Célula/métodos , Esferoides Celulares/metabolismo , Neoplasias Gástricas/metabolismo , Carcinoma/genética , Carcinoma/patología , Comunicación Celular/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Glicosilación , Humanos , Esferoides Celulares/patología , Neoplasias Gástricas/patología
8.
Biochim Biophys Acta ; 1860(8): 1795-808, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26721331

RESUMEN

BACKGROUND: Terminal α2-3 and α2-6 sialylation of glycans precludes further chain elongation, leading to the biosynthesis of cancer relevant epitopes such as sialyl-Lewis X (SLe(X)). SLe(X) overexpression is associated with tumor aggressive phenotype and patients' poor prognosis. METHODS: MKN45 gastric carcinoma cells transfected with the sialyltransferase ST3GAL4 were established as a model overexpressing sialylated terminal glycans. We have evaluated at the structural level the glycome and the sialoproteome of this gastric cancer cell line applying liquid chromatography and mass spectrometry. We further validated an identified target expression by proximity ligation assay in gastric tumors. RESULTS: Our results showed that ST3GAL4 overexpression leads to several glycosylation alterations, including reduced O-glycan extension and decreased bisected and increased branched N-glycans. A shift from α2-6 towards α2-3 linked sialylated N-glycans was also observed. Sialoproteomic analysis further identified 47 proteins with significantly increased sialylated N-glycans. These included integrins, insulin receptor, carcinoembryonic antigens and RON receptor tyrosine kinase, which are proteins known to be key players in malignancy. Further analysis of RON confirmed its modification with SLe(X) and the concomitant activation. SLe(X) and RON co-expression was validated in gastric tumors. CONCLUSION: The overexpression of ST3GAL4 interferes with the overall glycophenotype of cancer cells affecting a multitude of key proteins involved in malignancy. Aberrant glycosylation of the RON receptor was shown as an alternative mechanism of oncogenic activation. GENERAL SIGNIFICANCE: This study provides novel targets and points to an integrative tumor glycomic/proteomic-profiling for gastric cancer patients' stratification. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Antígeno Lewis X/biosíntesis , Proteínas de Neoplasias/biosíntesis , Polisacáridos/biosíntesis , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias Gástricas/metabolismo , Glicómica , Humanos , Antígeno Lewis X/genética , Proteínas de Neoplasias/genética , Polisacáridos/genética , Proteínas Tirosina Quinasas Receptoras/genética , Antígeno Sialil Lewis X , Sialiltransferasas/biosíntesis , Sialiltransferasas/genética , Neoplasias Gástricas/genética , beta-Galactosida alfa-2,3-Sialiltransferasa
9.
Glycobiology ; 27(7): 635-645, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419225

RESUMEN

Here, we introduce a novel scFv antibody, G2-D11, specific for two adjacent Tn-antigens (GalNAc-Ser/Thr) binding equally to three dimeric forms of the epitope, Ser-Thr, Thr-Thr and Thr-Ser. Compared to other anti-Tn reagents, the binding of G2-D11 is minimally influenced by the peptide structure, which indicates a high degree of carbohydrate epitope dominance and a low influence from the protein backbone. With a high affinity (KDapp = 1.3 × 10-8 M) and no cross-reactivity to either sialyl-Tn epitope or blood group A antigens, scFv G2-D11 is an excellent candidate for a well-defined anti-Tn-antigen reagent. Detailed immunohistochemical evaluation of tissue sections from a cohort of 80 patients with gastric carcinoma showed in all cases positive tumor cells. The observed staining was localized to the cytoplasm and in some cases to the membrane, whereas the surrounding tissue was completely negative demonstrating the usefulness of the novel Tn-antigen binding antibody.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/inmunología , Carcinoma/metabolismo , Epítopos/química , Anticuerpos de Cadena Única/inmunología , Neoplasias Gástricas/metabolismo , Antígenos de Carbohidratos Asociados a Tumores/química , Carcinoma/patología , Línea Celular Tumoral , Mapeo Epitopo , Epítopos/inmunología , Humanos , Anticuerpos de Cadena Única/química , Neoplasias Gástricas/patología
10.
Int J Mol Sci ; 18(11)2017 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-29143776

RESUMEN

Aberrant expression and hyperactivation of the human epidermal growth factor receptor 2 (ErbB2) constitute crucial molecular events underpinning gastric neoplastic transformation. Despite ErbB2 extracellular domain being a well-known target for glycosylation, its glycosylation profile and the molecular mechanisms through which it actively tunes tumorigenesis in gastric cancer (GC) cells remain elusive. We aimed at disclosing relevant ErbB2 glycan signatures and their functional impact on receptor's biology in GC cells. The transcriptomic profile of cancer-relevant glycosylation enzymes, and the expression and activation of the ErbB receptors were characterized in four GC cell lines. Cellular- and receptor-specific glycan profiling of ErbB2-overexpressing NCI-N87 cells unveiled a heterogeneous glycosylation pattern harboring the tumor-associated sialyl Lewis a (SLea) antigen. The expression of SLea and key enzymes integrating its biosynthetic pathway were strongly upregulated in this GC cell line. An association between the expression of ERBB2 and FUT3, a central gene in SLea biosynthesis, was disclosed in GC patients, further highlighting the crosstalk between ErbB2 and SLea expression. Moreover, cellular deglycosylation and CA 19.9 antibody-mediated blocking of SLea drastically altered ErbB2 expression and activation in NCI-N87 cells. Altogether, NCI-N87 cell line constitutes an appealing in vitro model to address glycan-mediated regulation of ErbB2 in GC.


Asunto(s)
Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional/métodos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Familia de Multigenes , Polisacáridos/metabolismo , Receptor ErbB-2/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Neoplasias Gástricas/genética
11.
Res Sq ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38659835

RESUMEN

N-glycosylation is one of the most common protein modifications in eukaryotes, with immense importance at the molecular, cellular, and organismal level. Accurate and reliable N-glycan analysis is essential to obtain a systems-wide understanding of fundamental biological processes. Due to the structural complexity of glycans, their analysis is still highly challenging. Here we make publicly available a consistent N-glycome dataset of 20 different mouse tissues and demonstrate a multimodal data analysis workflow that allows for unprecedented depth and coverage of N-glycome features. This highly scalable, LC-MS/MS data-driven method integrates the automated identification of N-glycan spectra, the application of non-targeted N-glycome profiling strategies and the isomer-sensitive analysis of glycan structures. Our delineation of critical sub-structural determinants and glycan isomers across the mouse N-glycome uncovered tissue-specific glycosylation patterns, the expression of non-canonical N-glycan structures and highlights multiple layers of N-glycome complexity that derive from organ-specific regulations of glycobiological pathways.

13.
EMBO Mol Med ; 14(8): e15230, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35781796

RESUMEN

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to both reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is, therefore, paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here, we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, Delta, and Omicron, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by all current VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2
14.
EMBO Mol Med ; 14(9): e15829, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35916241

RESUMEN

Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.


Asunto(s)
Trastornos del Neurodesarrollo , Receptores de Superficie Celular , Animales , Humanos , Ratones , Endocitosis , Matriz Extracelular/metabolismo , Trastornos del Neurodesarrollo/genética , Receptores de Superficie Celular/metabolismo
15.
Mater Sci Eng C Mater Biol Appl ; 119: 111616, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321659

RESUMEN

Hyaluronic acid (HA) has a key role in cancer progression. The HA's molecular weight (Mw) is altered in this pathological state: increased concentration of shorter fragments due to the overexpressed hyaluronidases and ROS. Aiming to mimic this microenvironment, we developed a Layer-by-Layer (LbL) platform presenting HA of different Mws, namely 6.4, 752 and 1500 kDa, to study the influence of HA Mw on the formation of focal adhesion sites (FAs), and the involvement of paxillin and CD44 in this process. High paxillin expression and formation of FAs, via CD44, is observed for MKN45 cells seeded on LbLs presenting HA 6.4 kDa, with the activation of the ERK1/2 pathway, responsible for cell motility and tumour progression. In contrast, activation of p38 pathway, usually related with cancer latency, is observed for cells seeded on LbLs with high Mw HA, i.e. 1500 kDa. Overall, we demonstrate the suitability of the developed platform to study cancer invasiveness.


Asunto(s)
Ácido Hialurónico , Neoplasias Gástricas , Adhesión Celular , Movimiento Celular , Humanos , Receptores de Hialuranos , Peso Molecular , Neoplasias Gástricas/tratamiento farmacológico , Microambiente Tumoral
16.
Microorganisms ; 9(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406734

RESUMEN

Glycans display increasingly recognized roles in pathological contexts, however, their impact in the host-pathogen interplay in many infectious diseases remains largely unknown. This is the case for tuberculosis (TB), one of the ten most fatal diseases worldwide, caused by infection of the bacteria Mycobacterium tuberculosis. We have recently reported that perturbing the core-2 O-glycans biosynthetic pathway increases the host susceptibility to M. tuberculosis infection, by disrupting the neutrophil homeostasis and enhancing lung pathology. In the present study, we show an increased expression of the sialylated glycan structure Sialyl-Lewis X (SLeX) in the lung epithelium upon M. tuberculosis infection. This increase in SLeX glycan epitope is accompanied by an altered lung tissue transcriptomic signature, with up-regulation of genes codifying enzymes that are involved in the SLeX core-2 O-glycans biosynthetic pathway. This study provides novel insights into previously unappreciated molecular mechanisms involving glycosylation, which modulate the host response to M. tuberculosis infection, possibly contributing to shape TB disease outcome.

17.
Transl Oncol ; 14(8): 101125, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34090013

RESUMEN

P-selectin glycoprotein ligand-1 (PSGL-1) is a membrane-bound glycoprotein expressed in lymphoid and myeloid cells. It is a ligand of P-, E- and L-selectin and is involved in T cell trafficking and homing to lymphoid tissues, among other functions. PSGL-1 expression has been implicated in different lymphoid malignancies, so here we aimed to evaluate the involvement of PSGL-1 in T cell lymphomagenesis and dissemination. PSGL-1 was highly expressed at the surface of human and mouse T cell leukemia and lymphoma cell lines. To assess its impact on T cell malignancies, we stably expressed human PSGL-1 (hPSGL-1) in a mouse thymic lymphoma cell line, which expresses low levels of endogenous PSGL-1 at the cell surface. hPSGL-1-expressing lymphoma cells developed subcutaneous tumors in athymic nude mice recipients faster than control empty vector or parental cells. Moreover, the kidneys, lungs and liver of tumor-bearing mice were infiltrated by hPSGL-1-expressing malignant T cells. To evaluate the role of PSGL-1 in lymphoma cell dissemination, we injected intravenously control and hPSGL-1-expressing lymphoma cells in athymic mice. Strikingly, PSGL-1 expression facilitated disease infiltration of the kidneys, as determined by histological analysis and anti-CD3 immunohistochemistry. Together, these results indicate that PSGL-1 expression promotes T cell lymphoma development and dissemination to different organs.

18.
Oncogene ; 40(21): 3719-3733, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947960

RESUMEN

The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab's target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2's ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor's trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.


Asunto(s)
Antígenos CD/metabolismo , Glicómica/métodos , Receptor ErbB-2/antagonistas & inhibidores , Sialiltransferasas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Trastuzumab/uso terapéutico , Antígenos CD/genética , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Sialiltransferasas/genética , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
19.
Sci Rep ; 10(1): 3171, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081911

RESUMEN

With the advent of personalized medicine, there is a movement to develop "smaller" and "smarter" microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences when compared to their natural counterparts, due to alterations in fundamental cellular processes such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only possible through time-consuming assays. In this work, we propose the "intelligent" Lab on Fiber (iLoF) device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is able to discriminate two human cancer cell models sharing the same genetic background but displaying a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which would allow further biological characterization of the captured circulating live cells.


Asunto(s)
Inteligencia Artificial , Neoplasias/diagnóstico , Neoplasias/patología , Análisis de la Célula Individual , Línea Celular Tumoral , Humanos , Procesamiento de Imagen Asistido por Computador , Fibras Ópticas , Pinzas Ópticas , Probabilidad , Procesamiento de Señales Asistido por Computador
20.
Sci Rep ; 10(1): 10775, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32587319

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA