Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Brain Behav Immun ; 80: 315-327, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30953775

RESUMEN

Stroke is currently the second leading cause of death in industrialized countries and the second cause of dementia after Alzheimer's disease. Diabetes is an independent risk factor for stroke that exacerbates the severity of lesions, disability and cognitive decline. There is increasing evidence that sustained brain inflammation may account for this long-term prejudicial outcome in diabetic patients in particular. We sought to demonstrate that experimental permanent middle cerebral artery occlusion (pMCAo) in the diabetic mouse aggravates stroke, induces cognitive decline, and is associated with exacerbated brain inflammation, and that these effects can be alleviated and/or prevented by the immunomodulator, glatiramer acetate (GA). Male diabetic C57Bl6 mice (streptozotocin IP) subjected to permanent middle cerebral artery occlusion (pMCAo), were treated by the immunomodulator, GA (Copaxone®) (1 mg/kg daily, sc) until 3 or 7 days post stroke. Infarct volume, brain pro- and anti-inflammatory mediators, microglial/macrophage density, and neurogenesis were monitored during the first week post stroke. Neurological sensorimotor deficit, spatial memory and brain deposits of Aß40 and Aß42 were assessed until six weeks post stroke. In diabetic mice with pMCAo, proinflammatory mediators (IL-1ß, MCP1, TNFα and CD68) were significantly higher than in non-diabetic mice. In GA-treated mice, the infarct volume was reduced by 30% at D3 and by 40% at D7 post stroke (P < 0.05), sensorimotor recovery was accelerated as early as D3, and long-term memory loss was prevented. Moreover, proinflammatory mediators significantly decreased between D3 (COX2) and D7 (CD32, TNFα, IL-1ß), and neurogenesis was significantly increased at D7. Moreover, GA abrogates the accumulation of insoluble Aß40. This work is the first one to evidence that the immunomodulatory drug GA reduces infarct volume and proinflammatory mediators, enhances early neurogenesis, accelerates sensorimotor recovery, and prevents long-term memory loss in diabetic mice with pMCAo.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Infarto Encefálico/inmunología , Complicaciones de la Diabetes , Acetato de Glatiramer/administración & dosificación , Trastornos de la Memoria/inmunología , Fármacos Neuroprotectores/administración & dosificación , Accidente Cerebrovascular/complicaciones , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Infarto Encefálico/complicaciones , Infarto Encefálico/prevención & control , Complicaciones de la Diabetes/inmunología , Encefalitis/etiología , Encefalitis/inmunología , Mediadores de Inflamación/inmunología , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Accidente Cerebrovascular/inmunología
2.
J Biol Chem ; 280(4): 2439-45, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15509572

RESUMEN

Polypeptide release factors from eubacteria and eukaryotes, although similar in function, belong to different protein families. They share one sequence motif, a GGQ tripeptide that is vital to release factor (RF) activity in both kingdoms. In bacteria, the Gln residue of the motif in RF1 and RF2 is modified to N(5)-methyl-Gln by the S-adenosyl l-methionine-dependent methyltransferase PrmC and the absence of Gln methylation decreases the release activity of Escherichia coli RF2 in vitro severalfold. We show here that the same modification is made to the GGQ motif of Saccharomyces cerevisiae release factor eRF1, the first time that N(5)-methyl-Gln has been found outside the bacterial kingdom. The product of the YDR140w gene is required for the methylation of eRF1 in vivo and for optimal yeast cell growth. YDR140w protein has significant homology to PrmC but lacks the N-terminal domain thought to be involved in the recognition of the bacterial release factors. Overproduced in S. cerevisiae, YDR140w can methylate eRF1 from yeast or man in vitro using S-adenosyl l-methionine as methyl donor provided that eRF3 and GTP are also present, suggesting that the natural substrate of the methyltransferase YDR140w is the ternary complex eRF1.eRF3.GTP.


Asunto(s)
Glutamina/química , Metiltransferasas/fisiología , Factores de Terminación de Péptidos/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Histidina/química , Espectrometría de Masas , Metilación , Metiltransferasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Factores de Terminación de Péptidos/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA