Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comput Aided Mol Des ; 38(1): 29, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150579

RESUMEN

Enhancing virtual screening enrichment has become an urgent problem in computational chemistry, driven by increasingly large databases of commercially available compounds, without a commensurate drop in in vitro screening costs. Docking these large databases is possible with cloud-scale computing. However, rapid docking necessitates compromises in scoring, often leading to poor enrichment and an abundance of false positives in docking results. This work describes a new scoring function composed of two parts - a knowledge-based component that predicts the probability of a particular atom type being in a particular receptor environment, and a tunable weight matrix that converts the probability predictions into a dimensionless score suitable for virtual screening enrichment. This score, the FitScore, represents the compatibility between the ligand and the binding site and is capable of a high degree of enrichment across standardized docking test sets.


Asunto(s)
Aprendizaje Automático , Simulación del Acoplamiento Molecular , Ligandos , Sitios de Unión , Humanos , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Programas Informáticos , Evaluación Preclínica de Medicamentos/métodos , Descubrimiento de Drogas/métodos
2.
Biophys J ; 116(2): 205-214, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30606449

RESUMEN

The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.


Asunto(s)
Benceno/química , Simulación de Dinámica Molecular , Muramidasa/química , Sustitución de Aminoácidos , Sitios de Unión , Simulación del Acoplamiento Molecular , Muramidasa/genética , Muramidasa/metabolismo , Unión Proteica , Electricidad Estática
3.
J Mol Recognit ; 32(3): e2765, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30264484

RESUMEN

Beta-secretase 1 (BACE-1) is an aspartyl protease implicated in the overproduction of ß-amyloid fibrils responsible for Alzheimer disease. The process of ß-amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH-dependent dynamics of BACE-1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest ß-amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double-protonated, mono-protonated, and double-deprotonated states over the known pH range of higher activity. These differences include Tyr 71-aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE-1 activity.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/química , Ácido Aspártico Endopeptidasas/química , Tirosina/química , Catálisis , Dominio Catalítico , Estabilidad de Enzimas , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Programas Informáticos , Agua/química
4.
J Comput Chem ; 39(19): 1354-1358, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29532496

RESUMEN

Alchemical free energy (AFE) calculations based on molecular dynamics (MD) simulations are key tools in both improving our understanding of a wide variety of biological processes and accelerating the design and optimization of therapeutics for numerous diseases. Computing power and theory have, however, long been insufficient to enable AFE calculations to be routinely applied in early stage drug discovery. One of the major difficulties in performing AFE calculations is the length of time required for calculations to converge to an ensemble average. CPU implementations of MD-based free energy algorithms can effectively only reach tens of nanoseconds per day for systems on the order of 50,000 atoms, even running on massively parallel supercomputers. Therefore, converged free energy calculations on large numbers of potential lead compounds are often untenable, preventing researchers from gaining crucial insight into molecular recognition, potential druggability and other crucial areas of interest. Graphics Processing Units (GPUs) can help address this. We present here a seamless GPU implementation, within the PMEMD module of the AMBER molecular dynamics package, of thermodynamic integration (TI) capable of reaching speeds of >140 ns/day for a 44,907-atom system, with accuracy equivalent to the existing CPU implementation in AMBER. The implementation described here is currently part of the AMBER 18 beta code and will be an integral part of the upcoming version 18 release of AMBER. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Algoritmos , Simulación de Dinámica Molecular , Compuestos Orgánicos/química , Termodinámica , Sitios de Unión
5.
J Mol Biol ; 432(2): 427-447, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31786266

RESUMEN

Drosophila melanogaster is a powerful system for characterizing alternative myosin isoforms and modeling muscle diseases, but high-resolution structures of fruit fly contractile proteins have not been determined. Here we report the first x-ray crystal structure of an insect myosin: the D melanogaster skeletal muscle myosin II embryonic isoform (EMB). Using our system for recombinant expression of myosin heavy chain (MHC) proteins in whole transgenic flies, we prepared and crystallized stable proteolytic S1-like fragments containing the entire EMB motor domain bound to an essential light chain. We solved the x-ray crystal structure by molecular replacement and refined the resulting model against diffraction data to 2.2 Å resolution. The protein is captured in two slightly different renditions of the rigor-like conformation with a citrate of crystallization at the nucleotide binding site and exhibits structural features common to myosins of diverse classes from all kingdoms of life. All atom molecular dynamics simulations on EMB in its nucleotide-free state and a derivative homology model containing 61 amino acid substitutions unique to the indirect flight muscle isoform (IFI) suggest that differences in the identity of residues within the relay and the converter that are encoded for by MHC alternative exons 9 and 11, respectively, directly contribute to increased mobility of these regions in IFI relative to EMB. This suggests the possibility that alternative folding or conformational stability within these regions contribute to the observed functional differences in Drosophila EMB and IFI myosins.


Asunto(s)
Cadenas Pesadas de Miosina/ultraestructura , Cadenas Ligeras de Miosina/ultraestructura , Isoformas de Proteínas/ultraestructura , Miosinas del Músculo Esquelético/ultraestructura , Secuencia de Aminoácidos/genética , Animales , Cristalografía por Rayos X , Drosophila melanogaster/química , Drosophila melanogaster/ultraestructura , Simulación de Dinámica Molecular , Miofibrillas/genética , Miofibrillas/ultraestructura , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Miosinas del Músculo Esquelético/química , Miosinas del Músculo Esquelético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA