Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(2): 520-530, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30446622

RESUMEN

Polynucleotide kinase/phosphatase (PNKP) and X-ray repair cross-complementing 1 (XRCC1) are key proteins in the single-strand DNA break repair pathway. Phosphorylated XRCC1 stimulates PNKP by binding to its forkhead-associated (FHA) domain, whereas nonphosphorylated XRCC1 stimulates PNKP by interacting with the PNKP catalytic domain. Here, we have further studied the interactions between these two proteins, including two variants of XRCC1 (R194W and R280H) arising from single-nucleotide polymorphisms (SNPs) that have been associated with elevated cancer risk in some reports. We observed that interaction of the PNKP FHA domain with phosphorylated XRCC1 extends beyond the immediate, well-characterized phosphorylated region of XRCC1 (residues 515-526). We also found that an XRCC1 fragment, comprising residues 166-436, binds tightly to PNKP and DNA and efficiently activates PNKP's kinase activity. However, interaction of either of the SNP-derived variants of this fragment with PNKP was considerably weaker, and their stimulation of PNKP was severely reduced, although they still could bind DNA effectively. Laser microirradiation revealed reduced recruitment of PNKP to damaged DNA in cells expressing either XRCC1 variant compared with PNKP recruitment in cells expressing WT XRCC1 even though WT and variant XRCC1s were equally efficient at localizing to the damaged DNA. These findings suggest that the elevated risk of cancer associated with these XRCC1 SNPs reported in some studies may be due in part to the reduced ability of these XRCC1 variants to recruit PNKP to damaged DNA.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polimorfismo de Nucleótido Simple , Dominios y Motivos de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Células CHO , Cricetulus , Daño del ADN , Enzimas Reparadoras del ADN/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Mapas de Interacción de Proteínas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/química
2.
Mutat Res ; 750(1-2): 15-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23896398

RESUMEN

DNA double strand breaks (DSBs) constitute one of the most dangerous forms of DNA damage. In actively replicating cells, these breaks are first recognized by specialized proteins that initiate a signal transduction cascade that modulates the cell cycle and results in the repair of the breaks by homologous recombination (HR). Protein signaling in response to double strand breaks involves phosphorylation and ubiquitination of chromatin and a variety of associated proteins. Here we review the emerging structural principles that underlie how post-translational protein modifications control protein signaling that emanates from these DNA lesions.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Transducción de Señal/genética , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga/genética , Recombinación Homóloga/fisiología , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estructura Terciaria de Proteína/fisiología , Transducción de Señal/fisiología
3.
Proc Natl Acad Sci U S A ; 107(5): 1983-8, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20080686

RESUMEN

Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.


Asunto(s)
Antibacterianos/química , Antibacterianos/metabolismo , Macrólidos/química , Macrólidos/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Deinococcus/química , Deinococcus/metabolismo , Descubrimiento de Drogas , Sinergismo Farmacológico , Eritromicina/análogos & derivados , Eritromicina/química , Eritromicina/metabolismo , Modelos Moleculares , Estructura Molecular , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
4.
Protein Sci ; 20(1): 160-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21082706

RESUMEN

The crystal structure of Phenylalanyl-tRNA synthetase from E. coli (EcPheRS), a class II aminoacyl-tRNA synthetase, complexed with phenylalanine and AMP was determined at 3.05 Å resolution. EcPheRS is a (αß)2 heterotetramer: the αß heterodimer of EcPheRS consists of 11 structural domains. Three of them: the N-terminus, A1 and A2 belong to the α-subunit and B1-B8 domains to the ß subunit. The structure of EcPheRS revealed that architecture of four helix-bundle interface, characteristic of class IIc heterotetrameric aaRSs, is changed: each of the two long helices belonging to CLM transformed into the coil-short helix structural fragments. The N-terminal domain of the α-subunit in EcPheRS forms compact triple helix domain. This observation is contradictory to the structure of the apo form of TtPheRS, where N-terminal domain was not detected in the electron density map. Comparison of EcPheRS structure with TtPheRS has uncovered significant rearrangements of the structural domains involved in tRNA(Phe) binding/translocation. As it follows from modeling experiments, to achieve a tighter fit with anticodon loop of tRNA, a shift of ∼5 Å is required for C-terminal domain B8, and of ∼6 to 7 Å for the whole N terminus. EcPheRSs have emerged as an important target for the incorporation of novel amino acids into genetic code. Further progress in design of novel compounds is anticipated based on the structural data of EcPheRS.


Asunto(s)
Adenosina Monofosfato/química , Proteínas de Escherichia coli/química , Fenilalanina-ARNt Ligasa/química , Fenilalanina/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA