Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Dev ; 32(5-6): 347-358, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29572261

RESUMEN

The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic Bmal1 knockout mice. Deleting a contacted intronic enhancer element in the Cryptochrome 1 (Cry1) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of Cry1 transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior.


Asunto(s)
Cromatina/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Transcripción Genética/genética , Animales , Proteínas CLOCK/genética , Cromatina/genética , Criptocromos/metabolismo , Elementos de Facilitación Genéticos/genética , Riñón/fisiología , Hígado/fisiología , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/fisiología , Eliminación de Secuencia/genética
2.
PLoS Genet ; 17(2): e1009350, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524027

RESUMEN

The circadian clock drives extensive temporal gene expression programs controlling daily changes in behavior and physiology. In mouse liver, transcription factors dynamics, chromatin modifications, and RNA Polymerase II (PolII) activity oscillate throughout the 24-hour (24h) day, regulating the rhythmic synthesis of thousands of transcripts. Also, 24h rhythms in gene promoter-enhancer chromatin looping accompany rhythmic mRNA synthesis. However, how chromatin organization impinges on temporal transcription and liver physiology remains unclear. Here, we applied time-resolved chromosome conformation capture (4C-seq) in livers of WT and arrhythmic Bmal1 knockout mice. In WT, we observed 24h oscillations in promoter-enhancer loops at multiple loci including the core-clock genes Period1, Period2 and Bmal1. In addition, we detected rhythmic PolII activity, chromatin modifications and transcription involving stable chromatin loops at clock-output gene promoters representing key liver function such as glucose metabolism and detoxification. Intriguingly, these contacts persisted in clock-impaired mice in which both PolII activity and chromatin marks no longer oscillated. Finally, we observed chromatin interaction hubs connecting neighbouring genes showing coherent transcription regulation across genotypes. Thus, both clock-controlled and clock-independent chromatin topology underlie rhythmic regulation of liver physiology.


Asunto(s)
Factores de Transcripción ARNTL/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Genoma/genética , Hígado/metabolismo , Factores de Transcripción ARNTL/metabolismo , Acetilación , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Histonas/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , RNA-Seq/métodos
3.
Genome Res ; 28(2): 182-191, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29254942

RESUMEN

Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.


Asunto(s)
Relojes Circadianos/genética , Ritmo Circadiano/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/genética , Animales , Cromatina/genética , Regulación de la Expresión Génica/genética , Riñón/metabolismo , Hígado/metabolismo , Ratones , Especificidad de Órganos/genética , Regiones Promotoras Genéticas
4.
Artículo en Inglés | MEDLINE | ID: mdl-27920039

RESUMEN

Mammals have evolved an internal timing system, the circadian clock, which synchronizes physiology and behavior to the daily light and dark cycles of the Earth. The master clock, located in the suprachiasmatic nucleus (SCN) of the brain, takes fluctuating light input from the retina and synchronizes other tissues to the same internal rhythm. The molecular clocks that drive these circadian rhythms are ticking in nearly all cells in the body. Efforts in systems chronobiology are now being directed at understanding, on a comprehensive scale, how the circadian clock controls different layers of gene regulation to provide robust timing cues at the cellular and tissue level. In this review, we introduce some basic concepts underlying periodicity of gene regulation, and then highlight recent genome-wide investigations on the propagation of rhythms across multiple regulatory layers in mammals, all the way from chromatin conformation to protein accumulation.


Asunto(s)
Ritmo Circadiano , Regulación de la Expresión Génica , Animales , Ritmo Circadiano/genética , Humanos , Procesamiento Postranscripcional del ARN
5.
PLoS One ; 9(6): e98930, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24911873

RESUMEN

PURPOSE: Epithelial-Mesenchymal Transition (EMT) features appear to be key events in development and progression of breast cancer. Epigenetic modifications contribute to the establishment and maintenance of cancer subclasses, as well as to the EMT process. Whether histone variants contribute to these transformations is not known. We investigated the relative expression levels of histone macroH2A1 splice variants and correlated it with breast cancer status/prognosis/types. METHODS: To detect differential expression of macroH2A1 variant mRNAs in breast cancer cells and tumor samples, we used the following databases: GEO, EMBL-EBI and publisher databases (may-august 2012). We extracted macroH2A1.1/macroH2A1 mRNA ratios and performed correlation studies on intrinsic molecular subclasses of breast cancer and on molecular characteristics of EMT. Associations between molecular and survival data were determined. RESULTS: We found increased macroH2A1.1/macroH2A1 mRNA ratios to be associated with the claudin-low intrinsic subtype in breast cancer cell lines. At the molecular level this association translates into a positive correlation between macroH2A1 ratios and molecular characteristics of the EMT process. Moreover, untreated Triple Negative Breast Cancers presenting a high macroH2A1.1 mRNA ratio exhibit a poor outcome. CONCLUSION: These results provide first evidence that macroH2A1.1 could be exploited as an actor in the maintenance of a transient cellular state in EMT progress towards metastatic development of breast tumors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/genética , Neoplasias de la Mama Triple Negativas/genética , Empalme Alternativo , Línea Celular Tumoral , Epigénesis Genética , Transición Epitelial-Mesenquimal/genética , Humanos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA