Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2321408121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976730

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker ß-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington's disease and spinocerebellar ataxias.


Asunto(s)
Neuritas , Receptores Androgénicos , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Animales , Neuritas/metabolismo , Ratas , Células PC12 , Senescencia Celular , Péptidos/metabolismo , Humanos , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/patología , Mutación , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología
2.
J Biol Chem ; 300(5): 107246, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556081

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.


Asunto(s)
Dihidrotestosterona , Péptidos , Multimerización de Proteína , Receptores Androgénicos , Animales , Humanos , Ratones , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/patología , Dihidrotestosterona/farmacología , Dihidrotestosterona/metabolismo , Péptidos/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratas , Línea Celular
3.
J Neurosci Res ; 102(1): e25278, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284836

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an X-linked disorder that affects males who inherit the androgen receptor (AR) gene with an abnormal CAG triplet repeat expansion. The resulting protein contains an elongated polyglutamine (polyQ) tract and causes motor neuron degeneration in an androgen-dependent manner. The precise molecular sequelae of SBMA are unclear. To assist with its investigation and the identification of therapeutic options, we report here a new model of SBMA in Drosophila melanogaster. We generated transgenic flies that express the full-length, human AR with a wild-type or pathogenic polyQ repeat. Each transgene is inserted into the same safe harbor site on the third chromosome of the fly as a single copy and in the same orientation. Expression of pathogenic AR, but not of its wild-type variant, in neurons or muscles leads to consistent, progressive defects in longevity and motility that are concomitant with polyQ-expanded AR protein aggregation and reduced complexity in neuromuscular junctions. Additional assays show adult fly eye abnormalities associated with the pathogenic AR species. The detrimental effects of pathogenic AR are accentuated by feeding flies the androgen, dihydrotestosterone. This new, robust SBMA model can be a valuable tool toward future investigations of this incurable disease.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Drosophila , Adulto , Humanos , Masculino , Animales , Drosophila melanogaster , Andrógenos , Atrofia Bulboespinal Ligada al X/genética , Atrofia Muscular
4.
Bioconjug Chem ; 29(4): 1276-1282, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29451775

RESUMEN

Huntington's disease (HD) is an autosomal-dominant neurodegenerative genetic disorder caused by CAG repeat expansion in exon 1 of the HTT gene. Expression of the mutant gene results in the production of a neurotoxic polyglutamine (polyQ)-expanded huntingtin (Htt) protein. Clinical trials of knockdown therapy of mutant polyglutamine-encoding HTT mRNA in Huntington's disease (HD) have begun. To measure HTT mRNA knockdown effectiveness in human cells, we utilized a fluorescent hybridization imaging agent specific to the region encompassing the human HTT mRNA initiation codon. We designed, synthesized, purified, and characterized Cal560-spacer-peptide nucleic acid (PNA)-spacer-IGF1 tetrapeptides. The human HTT PNA 12mer complement was CATGGCGGTCTC, while the rat htt equivalent 12mer contained the sequence CATGaCGGcCTC, with two bases differing from the human sequence. The cyclized IGF1 tetrapeptide fragment d(CSKC) that promotes IGF1 receptor-mediated endocytosis was bonded to the C-terminus. We tested the reliability of HTT mRNA imaging with Cal560-spacer-peptide nucleic acid (PNA)-spacer-IGF1 tetrapeptides in human embryonic kidney (HEK) 293T cells that express endogenous HTT and IGF1 receptor. By qPCR, we quantitated HTT mRNA in HEK293T cells with and without HTT mRNA knockdown by three different siRNAs. By confocal fluorescence imaging, we quantitated the accumulation of fluorescent HTT hybridization agent in the same cells. A rat homologue differing from the human sequence by two bases showed negligible fluorescence. qPCR indicated 86 ± 5% knockdown of HTT mRNA by the most effective siRNA. Similarly, Cal560- HTT PNA-peptide fluorescence intensity indicated 69 ± 6% reduction in HTT mRNA. We concluded that the fluorescence hybridization method correlates with the established qPCR method for quantitating HTT mRNA knockdown by siRNA in HEK293T cells, with a Pearson correlation coefficient of 0.865 for all three siRNA sequences. These results will enable real time imaging and quantitation of HTT mRNA in animal models of HD.


Asunto(s)
Proteína Huntingtina/genética , Imagen Óptica/métodos , Ácidos Nucleicos de Péptidos/química , Interferencia de ARN , ARN Mensajero/análisis , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Modelos Moleculares , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas
5.
J Biol Chem ; 290(20): 12572-84, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25795778

RESUMEN

Proteolysis of polyglutamine-expanded proteins is thought to be a required step in the pathogenesis of several neurodegenerative diseases. The accepted view for many polyglutamine proteins is that proteolysis of the mutant protein produces a "toxic fragment" that induces neuronal dysfunction and death in a soluble form; toxicity of the fragment is buffered by its incorporation into amyloid-like inclusions. In contrast to this view, we show that, in the polyglutamine disease spinal and bulbar muscular atrophy, proteolysis of the mutant androgen receptor (AR) is a late event. Immunocytochemical and biochemical analyses revealed that the mutant AR aggregates as a full-length protein, becoming proteolyzed to a smaller fragment through a process requiring the proteasome after it is incorporated into intranuclear inclusions. Moreover, the toxicity-predicting conformational antibody 3B5H10 bound to soluble full-length AR species but not to fragment-containing nuclear inclusions. These data suggest that the AR is toxic as a full-length protein, challenging the notion of polyglutamine protein fragment-associated toxicity by redefining the role of AR proteolysis in spinal and bulbar muscular atrophy pathogenesis.


Asunto(s)
Trastornos Musculares Atróficos/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteolisis , Receptores Androgénicos/metabolismo , Animales , Ratones , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/patología , Células PC12 , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Ratas , Receptores Androgénicos/genética
6.
Hum Mol Genet ; 23(5): 1376-86, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24150846

RESUMEN

Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.


Asunto(s)
Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , Trastornos Musculares Atróficos/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Trastornos Musculares Atróficos/metabolismo , Péptidos/genética , Condicionamiento Físico Animal , Receptores Androgénicos/genética
7.
Nat Chem Biol ; 9(2): 112-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222885

RESUMEN

We sought new strategies to reduce amounts of the polyglutamine androgen receptor (polyQ AR) and achieve benefits in models of spinobulbar muscular atrophy, a protein aggregation neurodegenerative disorder. Proteostasis of the polyQ AR is controlled by the heat shock protein 90 (Hsp90)- and Hsp70-based chaperone machinery, but mechanisms regulating the protein's turnover are incompletely understood. We demonstrate that overexpression of Hsp70 interacting protein (Hip), a co-chaperone that enhances binding of Hsp70 to its substrates, promotes client protein ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule that acts similarly to Hip by allosterically promoting Hsp70 binding to unfolded substrates. Like Hip, this synthetic co-chaperone enhances client protein ubiquitination and polyQ AR degradation. Both genetic and pharmacologic approaches targeting Hsp70 alleviate toxicity in a Drosophila model of spinobulbar muscular atrophy. These findings highlight the therapeutic potential of allosteric regulators of Hsp70 and provide new insights into the role of the chaperone machinery in protein quality control.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/química , Animales , Relación Dosis-Respuesta a Droga , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Drosophila , Femenino , Células HEK293 , Células HeLa , Humanos , Concentración 50 Inhibidora , Modelos Químicos , Chaperonas Moleculares/química , Trastornos Musculares Atróficos/metabolismo , Neurotoxinas/química , Células PC12 , Estructura Terciaria de Proteína , Proteínas/química , Piridinas/farmacología , Ratas , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Tiazoles/farmacología , Ubiquitinación
8.
Hum Mol Genet ; 21(19): 4225-36, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22736030

RESUMEN

Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Androgénicos/genética
9.
Nat Med ; 13(3): 348-53, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17334372

RESUMEN

Motor neuron degeneration resulting from the aggregation of the androgen receptor with an expanded polyglutamine tract (AR-polyQ) has been linked to the development of spinal and bulbar muscular atrophy (SBMA or Kennedy disease). Here we report that adding 5-hydroxy-1,7-bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-one (ASC-J9) disrupts the interaction between AR and its coregulators, and also increases cell survival by decreasing AR-polyQ nuclear aggregation and increasing AR-polyQ degradation in cultured cells. Intraperitoneal injection of ASC-J9 into AR-polyQ transgenic SBMA mice markedly improved disease symptoms, as seen by a reduction in muscular atrophy. Notably, unlike previous approaches in which surgical or chemical castration was used to reduce SBMA symptoms, ASC-J9 treatment ameliorated SBMA symptoms by decreasing AR-97Q aggregation and increasing VEGF164 expression with little change of serum testosterone. Moreover, mice treated with ASC-J9 retained normal sexual function and fertility. Collectively, our results point to a better therapeutic and preventative approach to treating SBMA, by disrupting the interaction between AR and AR coregulators.


Asunto(s)
Curcumina/análogos & derivados , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Fenotipo , Receptores Androgénicos/metabolismo , Antagonistas de Receptores Androgénicos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética
10.
JCI Insight ; 9(7)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452174

RESUMEN

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Ratones , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , NAD/metabolismo , Proteómica , Músculos/metabolismo , Ratones Transgénicos , Metabolismo Energético
11.
STAR Protoc ; 4(1): 101993, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36602900

RESUMEN

Although PC12 cells are a valuable tool in neuroscience research, previously published PC12 cell differentiation techniques fail to consider the variability in differentiation rates between different PC12 cell strains and clonal variants. Here, we present a comprehensive protocol to differentiate PC12 cells into equivalent neurite densities through live-cell imaging for morphological, immunocytochemical, and biochemical analyses. We detail steps on optimized substrate coating, plating techniques, culture media, validation steps, and quantification techniques.


Asunto(s)
Diagnóstico por Imagen , Neuritas , Animales , Ratas , Células PC12 , Diferenciación Celular , Medios de Cultivo
12.
iScience ; 26(8): 107375, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37599829

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease with substantial mitochondrial and metabolic dysfunctions. SBMA is caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Activating or increasing the NAD+-dependent deacetylase, SIRT3, reduced oxidative stress and death of cells modeling SBMA. However, increasing diminished SIRT3 in AR100Q mice failed to reduce acetylation of the SIRT3 target/antioxidant, SOD2, and had no effect on increased total acetylated peptides in quadriceps. Yet, overexpressing SIRT3 resulted in a trend of motor recovery, and corrected TCA cycle activity by decreasing acetylation of SIRT3 target proteins. We sought to boost blunted SIRT3 activity by replenishing diminished NAD+ with PARP inhibition. Although NAD+ was not affected, overexpressing SIRT3 with PARP inhibition fully restored hexokinase activity, correcting the glycolytic pathway in AR100Q quadriceps, and rescued motor endurance of SBMA mice. These data demonstrate that targeting metabolic anomalies can restore motor function downstream of polyQ-expanded AR.

13.
J Neurosci ; 31(48): 17425-36, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22131404

RESUMEN

Posttranslational protein modifications can play a major role in disease pathogenesis; phosphorylation, sumoylation, and acetylation modulate the toxicity of a variety of proteotoxic proteins. The androgen receptor (AR) is substantially modified, in response to hormone binding, by phosphorylation, sumoylation, and acetylation; these modifications might thus contribute to DHT-dependent polyglutamine (polyQ)-expanded AR proteotoxicity in spinal and bulbar muscular atrophy (SBMA). SIRT1, a nuclear protein and deacetylase of the AR, is neuroprotective in many neurodegenerative disease models. Our studies reveal that SIRT1 also offers protection against polyQ-expanded AR by deacetylating the AR at lysines 630/632/633. This finding suggested that nuclear AR acetylation plays a role in the aberrant metabolism and toxicity of polyQ-expanded AR. Subsequent studies revealed that the polyQ-expanded AR is hyperacetylated and that pharmacologic reduction of acetylation reduces mutant AR aggregation. Moreover, genetic mutation to inhibit polyQ-expanded AR acetylation of lysines 630/632/633 substantially decreased its aggregation and completely abrogated its toxicity in cell lines and motor neurons. Our studies also reveal one means by which the AR acetylation state likely modifies polyQ-expanded AR metabolism and toxicity, through its effect on DHT-dependent AR stabilization. Overall, our findings reveal a neuroprotective function of SIRT1 that operates through its deacetylation of polyQ-expanded AR and highlight the potential of both SIRT1 and AR acetylation as powerful therapeutic targets in SBMA.


Asunto(s)
Atrofia Muscular Espinal/genética , Receptores Androgénicos/genética , Sirtuina 1/genética , Acetilación , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Ratones , Atrofia Muscular Espinal/metabolismo , Neuronas/metabolismo , Células PC12 , Transporte de Proteínas/genética , Ratas , Receptores Androgénicos/metabolismo , Sirtuina 1/metabolismo , Médula Espinal/metabolismo , Expansión de Repetición de Trinucleótido
14.
Front Mol Neurosci ; 15: 1020143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277484

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative and neuromuscular genetic disease caused by the expansion of a polyglutamine-encoding CAG tract in the androgen receptor (AR) gene. The AR is an important transcriptional regulator of the nuclear hormone receptor superfamily; its levels are regulated in many ways including by ubiquitin-dependent degradation. Ubiquitination is a post-translational modification (PTM) which plays a key role in both AR transcriptional activity and its degradation. Moreover, the ubiquitin-proteasome system (UPS) is a fundamental component of cellular functioning and has been implicated in diseases of protein misfolding and aggregation, including polyglutamine (polyQ) repeat expansion diseases such as Huntington's disease and SBMA. In this review, we discuss the details of the UPS system, its functions and regulation, and the role of AR ubiquitination and UPS components in SBMA. We also discuss aspects of the UPS that may be manipulated for therapeutic effect in SBMA.

15.
Acta Neuropathol Commun ; 10(1): 97, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35791011

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. We observed significantly increased NMJ and myofiber pathology in fast-twitch, glycolytic motor units of the TA and gastrocnemius compared to slow-twitch, oxidative motor units of the soleus, as seen by decreased pre- and post-synaptic membrane area, decreased pre- and post-synaptic membrane colocalization, increased acetylcholine receptor compactness, a decrease in endplate area and complexity, and deficits in neurofilament heavy chain. Our data also show evidence for metabolic dysregulation and myofiber atrophy that correlate with severity of NMJ pathology. We propose a model in which the dynamic communicative relationship between the motor neuron and muscle, along with the developmental subtype of the muscle, promotes motor unit subtype specific vulnerability, metabolic alterations, and NMJ pathology.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Enfermedades Neurodegenerativas , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Ratones , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Enfermedades Neurodegenerativas/patología , Unión Neuromuscular/metabolismo , Presión , Lengua/metabolismo
16.
J Biol Chem ; 285(46): 35567-77, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20826791

RESUMEN

Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function.


Asunto(s)
Mutación , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Antagonistas de Andrógenos/farmacología , Andrógenos/farmacología , Anilidas/farmacología , Animales , Sitios de Unión/genética , Western Blotting , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Células Cultivadas , Dihidrotestosterona/farmacología , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Nitrilos/farmacología , Células PC12 , Unión Proteica/efectos de los fármacos , Ratas , Receptores Androgénicos/química , Testosterona/farmacología , Compuestos de Tosilo/farmacología , Técnicas del Sistema de Dos Híbridos
17.
Hum Mol Genet ; 18(11): 1937-50, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19279159

RESUMEN

The nucleus is the primary site of protein aggregation in many polyglutamine diseases, suggesting a central role in pathogenesis. In SBMA, the nucleus is further implicated by the critical role for disease of androgens, which promote the nuclear translocation of the mutant androgen receptor (AR). To clarify the importance of the nucleus in SBMA, we genetically manipulated the nuclear localization signal of the polyglutamine-expanded AR. Transgenic mice expressing this mutant AR displayed inefficient nuclear translocation and substantially improved motor function compared with SBMA mice. While we found that nuclear localization of polyglutamine-expanded AR is required for SBMA, we also discovered, using cell models of SBMA, that it is insufficient for both aggregation and toxicity and requires androgens for these disease features. Through our studies of cultured motor neurons, we further found that the autophagic pathway was able to degrade cytoplasmically retained expanded AR and represents an endogenous neuroprotective mechanism. Moreover, pharmacologic induction of autophagy rescued motor neurons from the toxic effects of even nuclear-residing mutant AR, suggesting a therapeutic role for autophagy in this nucleus-centric disease. Thus, our studies firmly establish that polyglutamine-expanded AR must reside within nuclei in the presence of its ligand to cause SBMA. They also highlight a mechanistic basis for the requirement for nuclear localization in SBMA neurotoxicity, namely the lack of mutant AR removal by the autophagic protein degradation pathway.


Asunto(s)
Autofagia , Citoplasma/metabolismo , Atrofia Muscular Espinal/fisiopatología , Péptidos/metabolismo , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido , Andrógenos/metabolismo , Animales , Línea Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Señales de Localización Nuclear/genética , Péptidos/genética , Transporte de Proteínas , Receptores Androgénicos/genética
18.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33170804

RESUMEN

Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington's disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington's disease.


Asunto(s)
Atrofia Bulboespinal Ligada al X/enzimología , Peptidasa Específica de Ubiquitina 7/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/patología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Células PC12 , Péptidos/genética , Péptidos/metabolismo , Ratas , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
19.
J Neurosci ; 29(25): 8236-47, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-19553463

RESUMEN

Aging is a risk factor for the development of adult-onset neurodegenerative diseases. Although some of the molecular pathways regulating longevity and stress resistance in lower organisms are defined (i.e., those activating the transcriptional regulators DAF-16 and HSF-1 in Caenorhabditis elegans), their relevance to mammals and disease susceptibility are unknown. We studied the signaling controlled by the mammalian homolog of DAF-16, FOXO3a, in model systems of motor neuron disease. Neuron death elicited in vitro by excitotoxic insult or the expression of mutant SOD1, mutant p150(glued), or polyQ-expanded androgen receptor was abrogated by expression of nuclear-targeted FOXO3a. We identify a compound [Psammaplysene A (PA)] that increases nuclear localization of FOXO3a in vitro and in vivo and show that PA also protects against these insults in vitro. Administration of PA to invertebrate model systems of neurodegeneration similarly blocked neuron death in a DAF-16/FOXO3a-dependent manner. These results indicate that activation of the DAF-16/FOXO3a pathway, genetically or pharmacologically, confers protection against the known causes of motor neuron diseases.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Enfermedad de la Neurona Motora/tratamiento farmacológico , Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/metabolismo , Fármacos Neuroprotectores/farmacología , Transducción de Señal , Tirosina/análogos & derivados , Animales , Western Blotting , Recuento de Células/métodos , Técnicas de Cultivo de Célula , Muerte Celular/efectos de los fármacos , Biología Computacional , Modelos Animales de Enfermedad , Drosophila , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Fluorescencia , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/biosíntesis , Inmunohistoquímica , Ácido Kaínico/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Médula Espinal/citología , Tirosina/administración & dosificación , Tirosina/farmacología
20.
Neurotherapeutics ; 16(4): 928-947, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31686397

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by a polyglutamine (polyQ) expansion in the androgen receptor (AR). Despite the fact that the monogenic cause of SBMA has been known for nearly 3 decades, there is no effective treatment for this disease, underscoring the complexity of the pathogenic mechanisms that lead to a loss of motor neurons and muscle in SBMA patients. In the current review, we provide an overview of the system-wide clinical features of SBMA, summarize the structure and function of the AR, discuss both gain-of-function and loss-of-function mechanisms of toxicity caused by polyQ-expanded AR, and describe the cell and animal models utilized in the study of SBMA. Additionally, we summarize previously conducted clinical trials which, despite being based on positive results from preclinical studies, proved to be largely ineffective in the treatment of SBMA; nonetheless, these studies provide important insights as researchers develop the next generation of therapies.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/terapia , Péptidos/genética , Receptores Androgénicos/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Atrofia Bulboespinal Ligada al X/diagnóstico , Ensayos Clínicos como Asunto/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA