Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 31(21): 3629-3642, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35285472

RESUMEN

Humans present remarkable diversity in their mitochondrial DNA (mtDNA) in terms of variants across individuals as well as across tissues and even cells within one person. We have investigated the timing of the first appearance of this variant-driven mosaicism. For this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 embryos present blastomeres that carry variants only detected in that cell, showing that mtDNA mosaicism arises very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across different samples. Recurring variants had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants unique to one oocyte or single embryonic cell. These differences were maintained through development, suggesting that the mtDNA mosaicism arising in the embryo is maintained into adulthood. We observed a decline in potentially pathogenic variants between day 3 and day 5 of development, suggesting early selection. We propose a model in which closely clustered mitochondria carrying specific mtDNA variants in the ooplasm are asymmetrically distributed throughout the cell divisions of the preimplantation embryo, resulting in the earliest form of mtDNA mosaicism in human development.


Asunto(s)
ADN Mitocondrial , Desarrollo Embrionario , Adulto , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Linaje de la Célula/genética , Desarrollo Embrionario/genética , Oocitos/metabolismo , Mitocondrias/genética , Mosaicismo
2.
Nat Commun ; 15(1): 1232, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336715

RESUMEN

Children conceived through assisted reproductive technologies (ART) have an elevated risk of lower birthweight, yet the underlying cause remains unclear. Our study explores mitochondrial DNA (mtDNA) variants as contributors to birthweight differences by impacting mitochondrial function during prenatal development. We deep-sequenced the mtDNA of 451 ART and spontaneously conceived (SC) individuals, 157 mother-child pairs and 113 individual oocytes from either natural menstrual cycles or after ovarian stimulation (OS) and find that ART individuals carried a different mtDNA genotype than SC individuals, with more de novo non-synonymous variants. These variants, along with rRNA variants, correlate with lower birthweight percentiles, independent of conception mode. Their higher occurrence in ART individuals stems from de novo mutagenesis associated with maternal aging and OS-induced oocyte cohort size. Future research will establish the long-term health consequences of these changes and how these findings will impact the clinical practice and patient counselling in the future.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Resultado del Embarazo , Embarazo Múltiple , Nacimiento Prematuro/epidemiología , Peso al Nacer , Mitocondrias/genética , ADN Mitocondrial/genética
3.
Bio Protoc ; 9(13): e3283, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654798

RESUMEN

Detecting heteroplasmies in the mitochondrial DNA (mtDNA) has been a challenge for many years. In the past, Sanger sequencing was the main option to perform this analysis, however, this method could not detect low frequency heteroplasmies. Massive Parallel Sequencing (MPS) provides the opportunity to study the mtDNA in depth, but a controlled pipeline is necessary to reliably retrieve and quantify the low frequency variants. It has been shown that differences in methods can significantly affect the number and frequency of the retrieved variants. In this protocol, we present a method involving both wet lab and bioinformatics that allows identifying and quantifying single nucleotide variants in the full mtDNA sequence, down to a heteroplasmic load of 1.5%. For this, we set up a PCR-based amplification of the mtDNA, followed by MPS using Illumina chemistry, and variant calling with two different algorithms, mtDNA server and Mutect. The PCR amplification is used to enrich the mitochondrial fraction, while the bioinformatic processing with two algorithms is used to discriminate the true heteroplasmies from background noise. The protocol described here allows for deep sequencing of the mitochondrial DNA in bulk DNA samples as well as single cells (both large cells such as human oocytes, and small-sized single cells such as human embryonic stem cells) with minor modifications to the protocol.

4.
Stem Cell Reports ; 11(1): 102-114, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29910126

RESUMEN

In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation.


Asunto(s)
Diferenciación Celular/genética , Evolución Clonal/genética , ADN Mitocondrial , Mutagénesis , Células Madre Pluripotentes/metabolismo , Alelos , Técnicas de Cultivo de Célula , Aberraciones Cromosómicas , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Heterogeneidad Genética , Variación Genética , Inestabilidad Genómica , Genotipo , Humanos , Mosaicismo
5.
Eur J Hum Genet ; 25(11): 1229-1236, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28832570

RESUMEN

Massive parallel sequencing (MPS) can accurately quantify mitochondrial DNA (mtDNA) single nucleotide variants (SNVs), but no MPS methods are currently validated to simultaneously and accurately establish the breakpoints and frequency of large deletions at low heteroplasmic loads. Here we present the thorough validation of an MPS protocol to quantify the load of very low frequency, large mtDNA deletions in bulk DNA and single cells, along with SNV calling by standard methods. We used a set of well-characterized DNA samples, DNA mixes and single cells to thoroughly control the study. We developed a custom script for the detection of mtDNA rearrangements that proved to be more accurate in detecting and quantifying deletions than pre-existing tools. We also show that PCR conditions and primersets must be carefully chosen to avoid biases in the retrieved variants and an increase in background noise, and established a lower detection limit of 0.5% heteroplasmic load for large deletions, and 1.5 and 2% for SNVs, for bulk DNA and single cells, respectively. Finally, the analysis of different single cells provided novel insights into mtDNA cellular mosaicism.


Asunto(s)
Eliminación de Gen , Genoma Mitocondrial , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Células Cultivadas , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo/normas , Humanos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/normas , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA