Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem B ; 123(47): 10036-10043, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31682450

RESUMEN

Molten mixtures of lithium chloride and metallic lithium (LiCl-Li) play an essential role in the electrolytic reduction of various metal oxides. These mixtures possess unique high temperature physical and chemical properties that have been investigated for decades. However, due to their extreme chemical reactivity, no study to date has been capable of definitively proving the basic physical nature of Li dissolution in molten LiCl. In this study, the evolution of the structure of molten LiCl-Li is probed as metallic Li is electrochemically introduced into the melt in situ, using synchrotron radiation experiments based on high energy wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). The time-resolved scattering results indicate the formation of transient Cl- ion cages surrounding low-density voids with a periodicity of ∼8.3 Å, which suggests the formation of metastable Li nanocluster. The structure of the LiCl-Li nanoclusters in the solution is modeled using ab initio molecular dynamics (AIMD) simulations. The simulation results are in agreement with the X-ray diffraction measurement and suggest the nanoclusters are predominantly Li8, along with smaller clusters.

2.
Chemosphere ; 203: 521-525, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29649694

RESUMEN

The production of nanoparticles through biosynthesis is a reliable, non-toxic, and sustainable alternative to conventional chemical and physical methods of production. While noble metals, such as palladium, gold, and silver, have been formed via bioreduction, biologically-induced reduction of electroactive elements to a metallic state has not been reported previously. Herein, we report the reduction of an electroactive element, molybdenum, via microbial reduction using Clostridium pasteurianum. C. pasteurianum was able to reduce 88% of the added Mo6+ ions. The bioreduced molybdenum was shown to be metallically bonded in a prototypical crystal structure with an average particle size of 15 nm. C. pasteurianum was previously shown to degrade azo dyes using in situ formed Pd nanoparticles, but this study shows that in situ formed Mo particles also act as catalysts for degradation of azo dyes. C. pasteurianum cultures with the bioformed Mo nanoparticles were able completely degrade 155 µM methyl orange within 6 min, while controls with no Mo took 36 min. This research demonstrates, for the first time, that the bioreduction of active elements and formation of catalytic particles is achievable.


Asunto(s)
Compuestos Azo/metabolismo , Clostridium/fisiología , Molibdeno/metabolismo , Compuestos Azo/química , Biocatálisis , Nanopartículas del Metal/química , Molibdeno/química
3.
Sci Rep ; 6: 25435, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145895

RESUMEN

Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. This observation is indicative of a nanofluid type colloidal suspension of Li8 in a molten salt matrix. It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA