RESUMEN
BACKGROUND: Non-syndromic orofacial cleft (NSOC) is a complex phenotype, involving multiple genetic and environmental factors. Association studies exploring the genetic susceptibility to this prevalent oral malformation show variability of results in different populations. Using a candidate gene approach, we aimed to verify the role of four single-nucleotide polymorphisms (SNPs) in the susceptibility to NSOC in Portuguese patients. METHODS: A total of 254 non-consanguineous individuals of Portuguese were recruited, including 120 patients with NSOC and 134 controls. About 92% of these patients had non-syndromic cleft lip with or without cleft palate (NSCL/P) and 8% had only non-syndromic cleft palate (NSCP). SNPs in the MTHFR (rs1801133), IRF6 (rs642961), PAX7 (rs742071) and TP63 (rs9332461) genes were studied, using a real-time approach with TaqMan probes. Allelic, genotypic, dominant, recessive and over-dominant models were explored using a chi-squared test. Adjusted p-value was calculated for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR). RESULTS: All SNPs were in Hardy-Weinberg equilibrium. For MTHFR, IRF6, and PAX7 SNPs, no statistically significant difference was highlighted for any of the evaluated models. For TP63 SNP, data fitted an over-dominant model, with a protective effect for heterozygotes (OR 1.897; CI 95% [1.144-3.147]; p < .016, when comparing controls vs. cases), but significance was lost when applying adjusted p-value for multiple comparisons (4 × 5 tests). CONCLUSION: In this Portuguese population, there was no evidence of an association between the evaluated SNPs and NSOC. For TP63 SNP, the possibility of a protective effect of heterozygotes should be further investigated.
RESUMEN
Drug-induced liver injury (DILI) is an unpredictable and feared side effect of antituberculosis treatment (AT). The present study aimed to identify clinical and genetic variables associated with susceptibility to AT-associated hepatotoxicity in patients with pulmonary tuberculosis treated with a standard protocol. Of 233 patients enrolled, 90% prospectively, 103 developed liver injury: 37 with mild and 66 with severe phenotype (DILI). All patients with mild hepatitis had a RUCAM score ≥4 and all patients with DILI had a RUCAM score ≥ 6. Eight clinical variables and variants in six candidate genes were assessed. A logistic multivariate regression analysis identified four risk factors for AT-DILI: age ≥ 55 years (OR:3.67; 95% CI:1.82−7.41; p < 0.001), concomitant medication with other hepatotoxic drugs (OR:2.54; 95% CI:1.23−5.26; p = 0.012), NAT2 slow acetylator status (OR:2.46; 95% CI:1.25−4.84; p = 0.009), and carriers of p.Val444Ala variant for ABCB11 gene (OR:2.06; 95%CI:1.02−4.17; p = 0.044). The statistical model explains 24.9% of the susceptibility to AT-DILI, with an 8.9 times difference between patients in the highest and in the lowest quartiles of risk scores. This study sustains the complex architecture of AT-DILI. Prospective studies should evaluate the benefit of NAT2 and ABCB11 genotyping in AT personalization, particularly in patients over 55 years.