Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Appl Physiol ; 120(5): 1041-1050, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32212024

RESUMEN

PURPOSE: A brief compressive stimulus is known to induce a rapid hyperemia in skeletal muscles, considered to contribute to the initial phase of functional hyperemia. Whether the same mechano-sensitivity characterizes the cutaneous circulation is debated. This study aims to investigate whether a rapid hyperemic response to compressive stimuli is also expressed by skin blood flow in humans. METHODS: In 12 subjects, brief compressive stimuli were delivered to the forearm at varying pressures/durations (50/2, 100/2, 200/2, 200/1, 200/5 mmHg/s); the sequence was randomized and repeated with the arm above and below heart level. Laser Doppler flowmetry technique was used to monitor skin blood flow. The response was described in terms of peak skin blood flow normalized to baseline (nSBFpeak), time-to-peak from the release of compression, and excess blood volume (EBV, expressed in terms of seconds of basal flow, s-bf) received during the response. RESULTS: The results consistently evidenced the occurrence of a compression-induced hyperemic response, with nSBFpeak = 2.9 ± 1.1, EBV = 17.0 ± 6.6 s-bf, time-to-peak = 7.0 ± 0.7 s (200 mmHg, 2 s, below heart level). Both nSBFpeak and EBV were significantly reduced (by about 50%) above compared to below heart level (p < 0.01). In addition, EBV slightly increased with increasing pressure (p < 0.05) and duration (p < 0.01) of the stimulus. CONCLUSIONS: For the first time, the rapid dilatator response to compressive stimuli was demonstrated in human cutaneous circulation. The functional meaning of this response remains to be elucidated.


Asunto(s)
Antebrazo/irrigación sanguínea , Hiperemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Flujo Sanguíneo Regional , Piel/irrigación sanguínea , Vasodilatación , Adulto , Femenino , Humanos , Flujometría por Láser-Doppler , Masculino , Presión
2.
J Ultrasound Med ; 36(10): 2113-2123, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28543857

RESUMEN

OBJECTIVES: Respirophasic variation of inferior vena cava (IVC) size is affected by large variability with spontaneous breathing. This study aims at characterizing the dependence of IVC size on controlled changes in intrathoracic pressure. METHODS: Ten healthy subjects, in supine position, performed controlled isovolumetric respiratory efforts at functional residual capacity, attaining positive (5, 10, and 15 mmHg) and negative (-5, -10, and -15 mmHg) alveolar pressure levels. The isovolumetric constraint implies that equivalent changes are exhibited by alveolar and intrathoracic pressures during respiratory tasks. RESULTS: The IVC cross-sectional area equal to 2.88 ± 0.43 cm2 at baseline (alveolar pressure = 0 mmHg) was progressively decreased by both expiratory and inspiratory efforts of increasing strength, with diaphragmatic efforts producing larger effects than thoracic ones: -55 ± 15% decrease, at +15 mmHg of alveolar pressure (P < .01), -80 ± 33 ± 12% at -15 mmHg diaphragmatic (P < .01), -33 ± 12% at -15 mmHg thoracic. Significant IVC changes in size (P < .01) and pulsatility (P < .05), along with non significant reduction in the response to respiratory efforts, were also observed during the first 30 minutes of supine rest, detecting an increase in vascular filling, and taking place after switching from the standing to the supine position. CONCLUSIONS: This study quantified the dependence of the IVC cross-sectional area on controlled intrathoracic pressure changes and evidenced the stronger influence of diaphragmatic over thoracic activity. Individual variability in thoracic/diaphragmatic respiratory pattern should be considered in the interpretation of the respirophasic modulations of IVC size.


Asunto(s)
Ecocardiografía/métodos , Respiración , Venas Cavas/anatomía & histología , Venas Cavas/fisiología , Adulto , Femenino , Humanos , Masculino , Tamaño de los Órganos , Valores de Referencia , Venas Cavas/diagnóstico por imagen
3.
Eur J Appl Physiol ; 115(11): 2281-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26142276

RESUMEN

PURPOSE: Near infrared spectroscopy (NIRS) assessment in skeletal muscle is potentially affected by circulatory changes occurring in superficial tissues. The aim of this study was to separately assess the interference from skin microcirculation and large vein blood flow by investigating the effect of selective local and remote warming-induced vasodilation, respectively. METHODS: Blood volume and oxygenation changes were investigated in the forearm muscles of healthy subjects in two experimental series (ES) during selective forearm (ES1, n = 12) or hand warming (ES2, n = 10). In ES1, the response to muscle contraction (10 s, 70 % MVC) and occlusion before and after warming was also investigated, while in ES2 two NIRS probes were expressly positioned over a visible vein and over a vein-free area. RESULTS: Local warming increased the modified Beer-Lambert (BL) blood volume indicator, tHb, by 5.3 ± 3.6 µmol/L cm to an extent comparable to post-contraction hyperemia (6.8 ± 2.9 µmol/L cm, p < 0.01). Remote warming increased skin blood flow at the hand and tHb at both forearm sites (on average: 5.4 ± 4.8 µmol/L cm, p < 0.01). Conversely, indicators of blood volume and oxygenation, based on spatially resolved spectroscopy (SRS), were not affected by any of the warming stimuli. CONCLUSIONS: These results demonstrate for the first time that: (1) blood drained by superficial veins may affect BL measurement; (2) it is difficult to exclude veins from the measurement by simple visual inspection of the cutaneous surface; (3) SRS effectively rejects artifacts from superficial hemodynamic changes in both cutaneous microcirculation and large veins. These results bear implications to conditions in which thermoregulatory adjustments cannot be excluded.


Asunto(s)
Antebrazo/irrigación sanguínea , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Flujo Sanguíneo Regional/fisiología , Adulto , Femenino , Calor , Humanos , Masculino , Microcirculación/fisiología , Músculo Esquelético/irrigación sanguínea , Consumo de Oxígeno/fisiología , Espectroscopía Infrarroja Corta
4.
Front Physiol ; 9: 1078, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30158874

RESUMEN

A single muscle compression (MC) with accompanying hyperemia and hyper-oxygenation results in attenuation of a subsequent MC hyperemia, as long as the subsequent MC takes place when muscle oxygenation is still elevated. Whether this is due to the hyper-oxygenation, or compression-induced de-activation of mechano-sensitive structures is unclear. We hypothesized that increased oxygenation and not de-activation of mechano-sensitive structures was responsible for this attenuation and that both compression and contraction-induced hyperemia attenuate the hyperemic response to a subsequent muscle contraction, and vice-versa. Protocol-1) In eight subjects two MCs separated by a 25 s interval were delivered to the forearm without or with partial occlusion of the axillary artery, aimed at preventing hyperemia and increased oxygenation in response to the first MC. Tissue oxygenation [oxygenated (hemoglobin + myoglobin)/total (hemoglobin + myoglobin)] from forearm muscles and brachial artery blood flow were continuously monitored by means of spatially-resolved near-infrared spectroscopy (NIRS) and Doppler ultrasound, respectively. With unrestrained blood flow, the hyperemic response to the second MC was attenuated, compared to the first (5.7 ± 3.3 vs. 14.8 ± 3.9 ml, P < 0.05). This attenuation was abolished with partial occlusion of the auxillary artery (14.4 ± 3.9 ml). Protocol-2) In 10 healthy subjects, hemodynamic changes were assessed in response to MC and electrically stimulated contraction (ESC, 0.5 s duration, 20 Hz) of calf muscles, as single stimuli or delivered in sequences of two separated by a 25 s interval. When MC or ESC were delivered 25 s following MC or ESC the response to the second stimulus was always attenuated (range: 60-90%). These findings support a role for excess tissue oxygenation in the attenuation of mechanically-stimulated rapid dilation and rule out inactivation of mechano-sensitive structures. Furthermore, both MC and ESC rapid vasodilatation are attenuated by prior transient hyperemia, regardless of whether the hyperemia is due to MC or ESC. Previously, mechanisms responsible for this dilation have not been considered to be oxygen sensitive. This study identifies muscle oxygenation state as relevant blunting factor, and reveals the need to investigate how these feedforward mechanisms might actually be affected by oxygenation.

5.
J Appl Physiol (1985) ; 123(6): 1451-1460, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28819006

RESUMEN

The rapid hyperemia evoked by muscle compression is short lived and was recently shown to undergo a rapid decrease even in spite of continuing mechanical stimulation. The present study aims at investigating the mechanisms underlying this attenuation, which include local metabolic mechanisms, desensitization of mechanosensitive pathways, and reduced efficacy of the muscle pump. In 10 healthy subjects, short sequences of mechanical compressions (n = 3-6; 150 mmHg) of the lower leg were delivered at different interstimulus intervals (ranging from 20 to 160 s) through a customized pneumatic device. Hemodynamic monitoring included near-infrared spectroscopy, detecting tissue oxygenation and blood volume in calf muscles, and simultaneous echo-Doppler measurement of arterial (superficial femoral artery) and venous (femoral vein) blood flow. The results indicate that 1) a long-lasting (>100 s) increase in local tissue oxygenation follows compression-induced hyperemia, 2) compression-induced hyperemia exhibits different patterns of attenuation depending on the interstimulus interval, 3) the amplitude of the hyperemia is not correlated with the amount of blood volume displaced by the compression, and 4) the extent of attenuation negatively correlates with tissue oxygenation (r = -0,78, P < 0.05). Increased tissue oxygenation appears to be the key factor for the attenuation of hyperemia upon repetitive compressive stimulation. Tissue oxygenation monitoring is suggested as a useful integration in medical treatments aimed at improving local circulation by repetitive tissue compression.NEW & NOTEWORTHY This study shows that 1) the hyperemia induced by muscle compression produces a long-lasting increase in tissue oxygenation, 2) the hyperemia produced by subsequent muscle compressions exhibits different patterns of attenuation at different interstimulus intervals, and 3) the extent of attenuation of the compression-induced hyperemia is proportional to the level of oxygenation achieved in the tissue. The results support the concept that tissue oxygenation is a key variable in blood flow regulation.


Asunto(s)
Hiperemia/fisiopatología , Pierna/irrigación sanguínea , Adulto , Volumen Sanguíneo/fisiología , Femenino , Arteria Femoral/fisiopatología , Vena Femoral/fisiopatología , Hemodinámica/fisiología , Humanos , Aparatos de Compresión Neumática Intermitente , Masculino , Músculo Esquelético/fisiopatología , Presión , Flujo Sanguíneo Regional/fisiología , Espectroscopía Infrarroja Corta/métodos
6.
Physiol Rep ; 1(7): e00179, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24744858

RESUMEN

The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 µmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 µmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA