Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Epidemiol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844537

RESUMEN

Human-induced climate change has led to more frequent and severe flooding throughout the globe. We examined the association between flood risk and the prevalence of coronary heart disease, high blood pressure, asthma, and poor mental health in the UnitedStates, while taking into account different levels of social vulnerability. We aggregated flood risk variables from First Street Foundation by census tract and used principal component analysis to derive a set of five interpretable flood risk factors. The dependent variables were census-tract level disease prevalences generated by the Centers for Disease Control and Prevention. Bayesian spatial conditional autoregressive models were fit on this data to quantify the relationship between flood risk and health outcomes under different stratifications of social vulnerability. We showed that three flood risk principal components had small but significant associations with each of the health outcomes, across the different stratifications of social vulnerability. Our analysis gives the first United States-wide estimates of the associated effects of flood risk on specific health outcomes. We also show that social vulnerability is an important moderator of the relationship between flood risk and health outcomes. Our approach can be extended to other ecological studies that examine the health impacts of climate hazards.

2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493674

RESUMEN

Disparity in air pollution exposure arises from variation at multiple spatial scales: along urban-to-rural gradients, between individual cities within a metropolitan region, within individual neighborhoods, and between city blocks. Here, we improve on existing capabilities to systematically compare urban variation at several scales, from hyperlocal (<100 m) to regional (>10 km), and to assess consequences for outdoor air pollution experienced by residents of different races and ethnicities, by creating a set of uniquely extensive and high-resolution observations of spatially variable pollutants: NO, NO2, black carbon (BC), and ultrafine particles (UFP). We conducted full-coverage monitoring of a wide sample of urban and suburban neighborhoods (93 km2 and 450,000 residents) in four counties of the San Francisco Bay Area using Google Street View cars equipped with the Aclima mobile platform. Comparing scales of variation across the sampled population, greater differences arise from localized pollution gradients for BC and NO (pollutants dominated by primary sources) and from regional gradients for UFP and NO2 (pollutants dominated by secondary contributions). Median concentrations of UFP, NO, and NO2 are, for Hispanic and Black populations, 8 to 30% higher than the population average; for White populations, average exposures to these pollutants are 9 to 14% lower than the population average. Systematic racial/ethnic disparities are influenced by regional concentration gradients due to sharp contrasts in demographic composition among cities and urban districts, while within-group extremes arise from local peaks. Our results illustrate how detailed and extensive fine-scale pollution observations can add new insights about differences and disparities in air pollution exposures at the population scale.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Etnicidad/estadística & datos numéricos , Disparidades en el Estado de Salud , Aplicaciones Móviles/estadística & datos numéricos , Planificación Social , Remodelación Urbana , Ciudades , Monitoreo del Ambiente/instrumentación , Humanos
3.
Environ Sci Technol ; 54(13): 7848-7857, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525662

RESUMEN

Urban concentrations of black carbon (BC) and other primary pollutants vary on small spatial scales (<100m). Mobile air pollution measurements can provide information on fine-scale spatial variation, thereby informing exposure assessment and mitigation efforts. However, the temporal sparsity of these measurements presents a challenge for estimating representative long-term concentrations. We evaluate the capabilities of mobile monitoring in the represention of time-stable spatial patterns by comparing against a large set of continuous fixed-site measurements from a sampling campaign in West Oakland, California. Custom-built, low-cost aerosol black carbon detectors (ABCDs) provided 100 days of continuous measurements at 97 near-road and 3 background fixed sites during summer 2017; two concurrently operated mobile laboratories collected over 300 h of in-motion measurements using a photoacoustic extinctiometer. The spatial coverage from mobile monitoring reveals patterns missed by the fixed-site network. Time-integrated measurements from mobile lab visits to fixed-site monitors reveal modest correlation (spatial R2 = 0.51) with medians of full daytime fixed-site measurements. Aggregation of mobile monitoring data in space and time can mitigate high levels of uncertainty associated with measurements at precise locations or points in time. However, concentrations estimated by mobile monitoring show a loss of spatial fidelity at spatial aggregations greater than 100 m.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Carbono , Monitoreo del Ambiente , Material Particulado/análisis , Hollín/análisis
4.
Environ Sci Technol ; 53(15): 8925-8937, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31313910

RESUMEN

This study presents land-use regression (LUR) models for submicron particulate matter (PM1) components from an urban area. Models are presented for mass concentrations of inorganic species (SO4, NO3, NH4), organic aerosol (OA) factors, and total PM1. OA is source-apportioned using positive matrix factorization (PMF) of data collected from aerosol mass spectrometry deployed on a mobile laboratory. PMF yielded a three-factor solution: cooking OA (COA), hydrocarbon-like OA (HOA), and less-oxidized oxygenated OA (LO-OOA). This study represents the first time that LUR has been applied to source-resolved OA factors. We sampled a roughly 20 km2 area of West Oakland, California, USA, over 1 month (mid-July to mid-August, 2017). The road network of the sampling domain was comprehensively sampled each day using a randomized driving route to minimize temporal and spatial bias. Mobile measurements were aggregated both spatially and temporally for use as discrete spatial observations for LUR model building. LUR model performance was highest for those species with more spatial variability (primary OA factors: COA R2 = 0.80, HOA R2 = 0.67) and lowest for secondary inorganic species (SO4 R2 = 0.47, NH4 R2 = 0.43) that were more spatially homogeneous. Notably, the stepwise selective LUR algorithm largely selected predictors for primary OA factors that correspond to the associated land-use categories (e.g., cooking land-use variables were selected in cooking-related PM models). This finding appears to be robust, as we demonstrate the predictive link between land-use variables and the corresponding source-resolved PM1 components through a subsampling analysis.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , California , Monitoreo del Ambiente , Material Particulado
5.
Environ Sci Technol ; 52(14): 7775-7784, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29886747

RESUMEN

Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modeled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was ≥90%, ≤10%, or >10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.


Asunto(s)
Meteorología , Ríos , Monitoreo del Ambiente , Lagos , North Carolina , Calidad del Agua
6.
Environ Sci Technol ; 52(21): 12563-12572, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30354135

RESUMEN

Air pollution measurements collected through systematic mobile monitoring campaigns can provide outdoor concentration data at high spatial resolution. We explore approaches to minimize data requirements for mapping a city's air quality using mobile monitors with "data-only" versus predictive modeling approaches. We equipped two Google Street View cars with 1-Hz instruments to collect nitric oxide (NO) and black carbon (BC) measurements in Oakland, CA. We explore two strategies for efficiently mapping spatial air quality patterns through Monte Carlo analyses. First, we explore a "data-only" approach where we attempt to minimize the number of repeated visits needed to reliably estimate concentrations for all roads. Second, we combine our data with a land use regression-kriging (LUR-K) model to predict at unobserved locations; here, measurements from only a subset of roads or repeat visits are considered. Although LUR-K models did not capture the full variability of on-road concentrations, models trained with minimal data consistently captured important covariates and general spatial air pollution trends, with cross-validation R2 for log-transformed NO and BC of 0.65 and 0.43. Data-only mapping performed poorly with few (1-2) repeated drives but obtained better cross-validation R2 than the LUR-K approach within 4 to 8 repeated drive days per road segment.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Material Particulado
7.
Environ Health ; 17(1): 38, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29759065

RESUMEN

BACKGROUND: Some studies have linked long-term exposure to traffic related air pollutants (TRAP) with adverse cardiovascular health outcomes; however, previous studies have not linked highly variable concentrations of TRAP measured at street-level within neighborhoods to cardiovascular health outcomes. METHODS: Long-term pollutant concentrations for nitrogen dioxide [NO2], nitric oxide [NO], and black carbon [BC] were obtained by street-level mobile monitoring on 30 m road segments and linked to residential addresses of 41,869 adults living in Oakland during 2010 to 2015. We fit Cox proportional hazard models to estimate the relationship between air pollution exposures and time to first cardiovascular event. Secondary analyses examined effect modification by diabetes and age. RESULTS: Long-term pollutant concentrations [mean, (standard deviation; SD)] for NO2, NO and BC were 9.9 ppb (SD 3.8), 4.9 ppb (SD 3.8), and 0.36 µg/m3 (0.17) respectively. A one SD increase in NO2, NO and BC, was associated with a change in risk of a cardiovascular event of 3% (95% confidence interval [CI] -6% to 12%), 3% (95% CI -5% to 12%), and - 1% (95% CI -8% to 7%), respectively. Among the elderly (≥65 yrs), we found an increased risk of a cardiovascular event of 12% for NO2 (95% CI: 2%, 24%), 12% for NO (95% CI: 3%, 22%), and 7% for BC (95% CI: -3%, 17%) per one SD increase. We found no effect modification by diabetes. CONCLUSIONS: Street-level differences in long-term exposure to TRAP were associated with higher risk of cardiovascular events among the elderly, indicating that within-neighborhood differences in TRAP are important to cardiovascular health. Associations among the general population were consistent with results found in previous studies, though not statistically significant.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Enfermedades Cardiovasculares/epidemiología , Contaminación por Tráfico Vehicular/análisis , Emisiones de Vehículos/análisis , Adulto , Anciano , California/epidemiología , Enfermedades Cardiovasculares/etiología , Ciudades , Estudios de Cohortes , Femenino , Mapeo Geográfico , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Características de la Residencia , Estudios Retrospectivos , Adulto Joven
8.
Environ Sci Technol ; 51(12): 6999-7008, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28578585

RESUMEN

Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO2, and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.


Asunto(s)
Contaminantes Atmosféricos , Automóviles , Monitoreo del Ambiente/métodos , Contaminación del Aire , Humanos , Material Particulado , Salud Pública
9.
Environ Res ; 159: 500-508, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28866382

RESUMEN

Land-use regression (LUR) models for ultrafine particles (UFP) and Black Carbon (BC) in urban areas have been developed using short-term stationary monitoring or mobile platforms in order to capture the high variability of these pollutants. However, little is known about the comparability of predictions of mobile and short-term stationary models and especially the validity of these models for assessing residential exposures and the robustness of model predictions developed in different campaigns. We used an electric car to collect mobile measurements (n = 5236 unique road segments) and short-term stationary measurements (3 × 30min, n = 240) of UFP and BC in three Dutch cities (Amsterdam, Utrecht, Maastricht) in 2014-2015. Predictions of LUR models based on mobile measurements were compared to (i) measured concentrations at the short-term stationary sites, (ii) LUR model predictions based on short-term stationary measurements at 1500 random addresses in the three cities, (iii) externally obtained home outdoor measurements (3 × 24h samples; n = 42) and (iv) predictions of a LUR model developed based upon a 2013 mobile campaign in two cities (Amsterdam, Rotterdam). Despite the poor model R2 of 15%, the ability of mobile UFP models to predict measurements with longer averaging time increased substantially from 36% for short-term stationary measurements to 57% for home outdoor measurements. In contrast, the mobile BC model only predicted 14% of the variation in the short-term stationary sites and also 14% of the home outdoor sites. Models based upon mobile and short-term stationary monitoring provided fairly high correlated predictions of UFP concentrations at 1500 randomly selected addresses in the three Dutch cities (R2 = 0.64). We found higher UFP predictions (of about 30%) based on mobile models opposed to short-term model predictions and home outdoor measurements with no clear geospatial patterns. The mobile model for UFP was stable over different settings as the model predicted concentration levels highly correlated to predictions made by a previously developed LUR model with another spatial extent and in a different year at the 1500 random addresses (R2 = 0.80). In conclusion, mobile monitoring provided robust LUR models for UFP, valid to use in epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hollín/análisis , Ciudades , Planificación de Ciudades , Tamaño de la Partícula , Análisis de Regresión
10.
Environ Health ; 16(1): 108, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29041975

RESUMEN

BACKGROUND: Influenza peaks during the wintertime in temperate regions and during the annual rainy season in tropical regions - however reasons for the observed differences in disease ecology are poorly understood. We hypothesize that episodes of extreme precipitation also result in increased influenza in the Northeastern United States, but this association is not readily apparent, as no defined 'rainy season' occurs. Our objective was to evaluate the association between extreme precipitation (≥ 99th percentile) events and risk of emergency room (ER) visit for influenza in Massachusetts during 2002-2008. METHODS: A case-crossover analysis of extreme precipitation events and influenza ER visits was conducted using hospital administrative data including patient town of residence, date of visit, age, sex, and associated diagnostic codes. Daily precipitation estimates were generated for each town based upon data from the National Oceanic and Atmospheric Administration. Odds ratio (OR) and 95% confidence intervals (CI) for associations between extreme precipitation and ER visits for influenza were estimated using conditional logistic regression. RESULTS: Extreme precipitation events were associated with an OR = 1.23 (95%CI: 1.16, 1.30) for ER visits for influenza at lag days 0-6. There was significant effect modification by race, with the strongest association observed among Blacks (OR = 1.48 (1.30, 1.68)). CONCLUSIONS: We observed a positive association between extreme precipitation events and ER visits for influenza, particularly among Blacks. Our results suggest that influenza is associated with extreme precipitation in a temperate area; this association could be a result of disease ecology, behavioral changes such as indoor crowding, or both. Extreme precipitation events are expected to increase in the Northeastern United States as climate change progresses. Additional research exploring the basis of this association can inform potential interventions for extreme weather events and influenza transmission.


Asunto(s)
Servicio de Urgencia en Hospital/estadística & datos numéricos , Gripe Humana/epidemiología , Tiempo (Meteorología) , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Oportunidad Relativa , Adulto Joven
11.
Environ Sci Technol ; 50(23): 12894-12902, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27809494

RESUMEN

Mobile and short-term monitoring campaigns are increasingly used to develop land-use regression (LUR) models for ultrafine particles (UFP) and black carbon (BC). It is not yet established whether LUR models based on mobile or short-term stationary measurements result in comparable models and concentration predictions. The goal of this paper is to compare LUR models based on stationary (30 min) and mobile UFP and BC measurements from a single campaign. An electric car collected both repeated stationary and mobile measurements in Amsterdam and Rotterdam, The Netherlands. A total of 2964 road segments and 161 stationary sites were sampled over two seasons. Our main comparison was based on predicted concentrations of the mobile and stationary monitoring LUR models at 12 682 residential addresses in Amsterdam. Predictor variables in the mobile and stationary LUR model were comparable, resulting in highly correlated predictions at external residential addresses (R2 of 0.89 for UFP and 0.88 for BC). Mobile model predictions were, on average, 1.41 and 1.91 times higher than stationary model predictions for UFP and BC, respectively. LUR models based upon mobile and stationary monitoring predicted highly correlated UFP and BC concentration surfaces, but predicted concentrations based on mobile measurements were systematically higher.


Asunto(s)
Contaminación del Aire , Material Particulado , Contaminantes Atmosféricos , Carbono , Monitoreo del Ambiente
12.
Environ Sci Technol ; 49(16): 9817-25, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26191968

RESUMEN

Radon ((222)Rn) is a naturally occurring chemically inert, colorless, and odorless radioactive gas produced from the decay of uranium ((238)U), which is ubiquitous in rocks and soils worldwide. Exposure to (222)Rn is likely the second leading cause of lung cancer after cigarette smoking via inhalation; however, exposure through untreated groundwater is also a contributing factor to both inhalation and ingestion routes. A land use regression (LUR) model for groundwater (222)Rn with anisotropic geological and (238)U based explanatory variables is developed, which helps elucidate the factors contributing to elevated (222)Rn across North Carolina. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical framework to increase accuracy and produce a point-level LUR-BME model of groundwater (222)Rn across North Carolina including prediction uncertainty. The LUR-BME model of groundwater (222)Rn results in a leave-one out cross-validation r(2) of 0.46 (Pearson correlation coefficient = 0.68), effectively predicting within the spatial covariance range. Modeled results of (222)Rn concentrations show variability among intrusive felsic geological formations likely due to average bedrock (238)U defined on the basis of overlying stream-sediment (238)U concentrations that is a widely distributed consistently analyzed point-source data.


Asunto(s)
Entropía , Agua Subterránea/química , Radón/análisis , Contaminantes Químicos del Agua/análisis , Teorema de Bayes , Geografía , North Carolina , Análisis de Regresión
13.
Environ Sci Technol ; 48(18): 10804-12, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25148521

RESUMEN

Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/química , Modelos Teóricos , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Teorema de Bayes , Entropía , Humanos , Dinámicas no Lineales , North Carolina , Análisis de Regresión , Reproducibilidad de los Resultados , Porcinos , Factores de Tiempo
14.
PLoS One ; 19(3): e0298687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547186

RESUMEN

Environmental toxicants overwhelmingly occur together as mixtures. The variety of possible chemical interactions makes it difficult to predict the danger of the mixture. In this work, we propose the novel Reflected Generalized Concentration Addition (RGCA), a piece-wise, geometric technique for sigmoidal dose-responsed inverse functions that extends the use of generalized concentration addition (GCA) for 3+ parameter models. Since experimental tests of all relevant mixtures is costly and intractable, we rely only on the individual chemical dose responses. Additionally, RGCA enhances the classical two-step model for the cumulative effects of mixtures, which assumes a combination of GCA and independent action (IA). We explore how various clustering methods can dramatically improve predictions. We compare our technique to the IA, CA, and GCA models and show in a simulation study that the two-step approach performs well under a variety of true models. We then apply our method to a challenging data set of individual chemical and mixture responses where the target is an androgen receptor (Tox21 AR-luc). Our results show significantly improved predictions for larger mixtures. Our work complements ongoing efforts to predict environmental exposure to various chemicals and offers a starting point for combining different exposure predictions to quantify a total risk to health.


Asunto(s)
Exposición a Riesgos Ambientales , Teorema de Bayes , Simulación por Computador
15.
Artículo en Inglés | MEDLINE | ID: mdl-39251872

RESUMEN

BACKGROUND: Geospatial methods are common in environmental exposure assessments and increasingly integrated with health data to generate comprehensive models of environmental impacts on public health. OBJECTIVE: Our objective is to review geospatial exposure models and approaches for health data integration in environmental health applications. METHODS: We conduct a literature review and synthesis. RESULTS: First, we discuss key concepts and terminology for geospatial exposure data and models. Second, we provide an overview of workflows in geospatial exposure model development and health data integration. Third, we review modeling approaches, including proximity-based, statistical, and mechanistic approaches, across diverse exposure types, such as air quality, water quality, climate, and socioeconomic factors. For each model type, we provide descriptions, general equations, and example applications for environmental exposure assessment. Fourth, we discuss the approaches used to integrate geospatial exposure data and health data, such as methods to link data sources with disparate spatial and temporal scales. Fifth, we describe the landscape of open-source tools supporting these workflows.

16.
Cell Genom ; 4(7): 100591, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38925123

RESUMEN

Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.


Asunto(s)
Salud Ambiental , Interacción Gen-Ambiente , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Estudio de Asociación del Genoma Completo , Exposición a Riesgos Ambientales/efectos adversos
17.
Sci Total Environ ; 855: 158905, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36152849

RESUMEN

In the real world, individuals are exposed to chemicals from sources that vary over space and time. However, traditional risk assessments based on in vivo animal studies typically use a chemical-by-chemical approach and apical disease endpoints. New approach methodologies (NAMs) in toxicology, such as in vitro high-throughput (HTS) assays generated in Tox21 and ToxCast, can more readily provide mechanistic chemical hazard information for chemicals with no existing data than in vivo methods. In this paper, we establish a workflow to assess the joint action of 41 modeled ambient chemical exposures in the air from the USA-wide National Air Toxics Assessment by integrating human exposures with hazard data from curated HTS (cHTS) assays to identify counties where exposure to the local chemical mixture may perturb a common biological target. We exemplify this proof-of-concept using CYP1A1 mRNA up-regulation. We first estimate internal exposure and then convert the inhaled concentration to a steady state plasma concentration using physiologically based toxicokinetic modeling parameterized with county-specific information on ages and body weights. We then use the estimated blood plasma concentration and the concentration-response curve from the in vitro cHTS assay to determine the chemical-specific effects of the mixture components. Three mixture modeling methods were used to estimate the joint effect from exposure to the chemical mixture on the activity levels, which were geospatially mapped. Finally, a Monte Carlo uncertainty analysis was performed to quantify the influence of each parameter on the combined effects. This workflow demonstrates how NAMs can be used to predict early-stage biological perturbations that can lead to adverse health outcomes that result from exposure to chemical mixtures. As a result, this work will advance mixture risk assessment and other early events in the effects of chemicals.


Asunto(s)
Bioensayo , Exposición a Riesgos Ambientales , Humanos , Animales , Medición de Riesgo , Método de Montecarlo , Exposición a Riesgos Ambientales/análisis
18.
J Expo Sci Environ Epidemiol ; 33(3): 474-481, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36460922

RESUMEN

BACKGROUND: Autoimmune (AI) diseases appear to be a product of genetic predisposition and environmental triggers. Disruption of the skin barrier causes exacerbation of psoriasis/eczema. Oxidative stress is a mechanistic pathway for pathogenesis of the disease and is also a primary mechanism for the detrimental effects of air pollution. METHODS: We evaluated the association between autoimmune skin diseases (psoriasis or eczema) and air pollutant mixtures in 9060 subjects from the Personalized Environment and Genes Study (PEGS) cohort. Pollutant exposure data on six criteria air pollutants are publicly available from the Center for Air, Climate, and Energy Solutions and the Atmospheric Composition Analysis Group. For increased spatial resolution, we included spatially cumulative exposure to volatile organic compounds from sites in the United States Environmental Protection Agency Toxic Release Inventory and the density of major roads within a 5 km radius of a participant's address from the United States Geological Survey. We applied logistic regression with quantile g-computation, adjusting for age, sex, diagnosis with an autoimmune disease in family or self, and smoking history to evaluate the relationship between self-reported diagnosis of an AI skin condition and air pollution mixtures. RESULTS: Only one air pollution variable, sulfate, was significant individually (OR = 1.06, p = 3.99E-2); however, the conditional odds ratio for the combined mixture components of PM2.5 (black carbon, sulfate, sea salt, and soil), CO, SO2, benzene, toluene, and ethylbenzene is 1.10 (p-value = 5.4E-3). SIGNIFICANCE: While the etiology of autoimmune skin disorders is not clear, this study provides evidence that air pollutants are associated with an increased prevalence of these disorders. The results provide further evidence of potential health impacts of air pollution exposures on life-altering diseases. SIGNIFICANCE AND IMPACT STATEMENT: The impact of air pollution on non-pulmonary and cardiovascular diseases is understudied and under-reported. We find that air pollution significantly increased the odds of psoriasis or eczema in our cohort and the magnitude is comparable to the risk associated with smoking exposure. Autoimmune diseases like psoriasis and eczema are likely impacted by air pollution, particularly complex mixtures and our study underscores the importance of quantifying air pollution-associated risks in autoimmune disease.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Eccema , Psoriasis , Humanos , Estados Unidos/epidemiología , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Eccema/inducido químicamente , Eccema/epidemiología , Psoriasis/inducido químicamente , Psoriasis/epidemiología , Psoriasis/genética
19.
Environ Sci Technol ; 46(5): 2772-80, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22264162

RESUMEN

Geographic information systems (GIS) based techniques are cost-effective and efficient methods used by state agencies and epidemiology researchers for estimating concentration and exposure. However, budget limitations have made statewide assessments of contamination difficult, especially in groundwater media. Many studies have implemented address geocoding, land use regression, and geostatistics independently, but this is the first to examine the benefits of integrating these GIS techniques to address the need of statewide exposure assessments. A novel framework for concentration exposure is introduced that integrates address geocoding, land use regression (LUR), below detect data modeling, and Bayesian Maximum Entropy (BME). A LUR model was developed for tetrachloroethylene that accounts for point sources and flow direction. We then integrate the LUR model into the BME method as a mean trend while also modeling below detects data as a truncated Gaussian probability distribution function. We increase available PCE data 4.7 times from previously available databases through multistage geocoding. The LUR model shows significant influence of dry cleaners at short ranges. The integration of the LUR model as mean trend in BME results in a 7.5% decrease in cross validation mean square error compared to BME with a constant mean trend.


Asunto(s)
Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Agua Subterránea/química , Tetracloroetileno/análisis , Contaminación del Agua/análisis , Simulación por Computador , North Carolina , Análisis de Regresión , Reproducibilidad de los Resultados , Factores de Tiempo
20.
Curr Epidemiol Rep ; 9(2): 87-107, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35754929

RESUMEN

Purpose of review: We reviewed the exposure assessments of ambient air pollution used in studies of fertility, fecundability, and pregnancy loss. Recent findings: Comprehensive literature searches were performed in the PUBMED, Web of Science, and Scopus databases. Of 168 total studies, 45 met the eligibility criteria and were included in the review. We find that 69% of fertility and pregnancy loss studies have used one-dimensional proximity models or surface monitor data, while only 35% have used the improved models, such as land-use regression models (4%), dispersion/chemical transport models (11%), or fusion models (20%). No published studies have used personal air monitors. Summary: While air pollution exposure models have vastly improved over the past decade from simple, one-dimensional distance or air monitor data, to models that incorporate physiochemical properties leading to better predictive accuracy, precision, and increased spatiotemporal variability and resolution, the fertility literature has yet to fully incorporate these new methods. We provide descriptions of each of these air pollution exposure models and assess the strengths and limitations of each model, while summarizing the findings of the literature on ambient air pollution and fertility that apply each method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA