Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 150(5): 961-74, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22901742

RESUMEN

Sister chromatid cohesion is mediated by entrapment of sister DNAs by a tripartite ring composed of cohesin's Smc1, Smc3, and α-kleisin subunits. Cohesion requires acetylation of Smc3 by Eco1, whose role is to counteract an inhibitory (antiestablishment) activity associated with cohesin's Wapl subunit. We show that mutations abrogating antiestablishment activity also reduce turnover of cohesin on pericentric chromatin. Our results reveal a "releasing" activity inherent to cohesin complexes transiently associated with Wapl that catalyzes their dissociation from chromosomes. Fusion of Smc3's nucleotide binding domain to α-kleisin's N-terminal domain also reduces cohesin turnover within pericentric chromatin and permits establishment of Wapl-resistant cohesion in the absence of Eco1. We suggest that releasing activity opens the Smc3/α-kleisin interface, creating a DNA exit gate distinct from its proposed entry gate at the Smc1/3 interface. According to this notion, the function of Smc3 acetylation is to block its dissociation from α-kleisin. The functional implications of regulated ring opening are discussed.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Cromosomas Fúngicos/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/citología , Cohesinas
2.
Mol Cell ; 70(6): 1134-1148.e7, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932904

RESUMEN

Cohesin organizes DNA into chromatids, regulates enhancer-promoter interactions, and confers sister chromatid cohesion. Its association with chromosomes is regulated by hook-shaped HEAT repeat proteins that bind Scc1, namely Scc3, Pds5, and Scc2. Unlike Pds5, Scc2 is not a stable cohesin constituent but, as shown here, transiently replaces Pds5. Scc1 mutations that compromise its interaction with Scc2 adversely affect cohesin's ATPase activity and loading. Moreover, Scc2 mutations that alter how the ATPase responds to DNA abolish loading despite cohesin's initial association with loading sites. Lastly, Scc2 mutations that permit loading in the absence of Scc4 increase Scc2's association with chromosomal cohesin and reduce that of Pds5. We suggest that cohesin switches between two states: one with Pds5 bound that is unable to hydrolyze ATP efficiently but is capable of release from chromosomes and another in which Scc2 replaces Pds5 and stimulates ATP hydrolysis necessary for loading and translocation from loading sites.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
3.
Mol Cell ; 33(6): 763-74, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19328069

RESUMEN

Cohesin's Smc1, Smc3, and Scc1 subunits form a tripartite ring that entraps sister DNAs. Scc3, Pds5, and Rad61 (Wapl) are regulatory subunits that control this process. We describe here smc3, scc3, pds5, and rad61 mutations that permit yeast cell proliferation and entrapment of sister DNAs by cohesin rings in the absence of Eco1, an acetyl transferase normally essential for establishing sister chromatid cohesion. The smc3 mutations cluster around and include a highly conserved lysine (K113) close to Smc3's ATP-binding pocket, which, together with K112, is acetylated by Eco1. Lethality caused by mutating both residues to arginine is suppressed by the scc3, pds5, and rad61 mutants. Scc3, Pds5, and Rad61 form a complex and inhibit entrapment of sister DNAs by a process involving the "K112/K113" surface on Smc3's ATPase. According to this model, Eco1 promotes sister DNA entrapment partly by relieving an antiestablishment activity associated with Scc3, Pds5, and Rad61.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/genética , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Western Blotting , Proliferación Celular , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Cohesinas
4.
Nature ; 454(7202): 297-301, 2008 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-18596691

RESUMEN

Sister chromatid cohesion, which is essential for mitosis, is mediated by a multi-subunit protein complex called cohesin. Cohesin's Scc1, Smc1 and Smc3 subunits form a tripartite ring structure, and it has been proposed that cohesin holds sister DNA molecules together by trapping them inside its ring. To test this, we used site-specific crosslinking to create chemical connections at the three interfaces between the three constituent polypeptides of the ring, thereby creating covalently closed cohesin rings. As predicted by the ring entrapment model, this procedure produced dimeric DNA-cohesin structures that are resistant to protein denaturation. We conclude that cohesin rings concatenate individual sister minichromosome DNA molecules.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , ADN Concatenado/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Estructura Cuaternaria de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Dodecil Sulfato de Sodio/farmacología , Cohesinas
5.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187711

RESUMEN

53BP1 regulates DNA end-joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting RIF1 and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate non-homologous end-joining (NHEJ). However, how this axis regulates DNA end-joining and HR suppression remains unresolved. We investigated shieldin and its interplay with CST, a complex recently implicated in 53BP1-dependent activities. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination co-reliant on both complexes. ATM-dependent DNA damage signalling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the resilience of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.

6.
Dev Cell ; 56(22): 3100-3114.e4, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34758289

RESUMEN

Protection of peri-centromeric (periCEN) REC8 cohesin from Separase and sister kinetochore (KT) attachment to microtubules emanating from the same spindle pole (co-orientation) ensures that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II in mouse oocytes, we discovered that both sister KT co-orientation and periCEN cohesin protection depend on the SCC, and not the cytoplasm. Moreover, the catalytic activity of Separase at meiosis I is necessary not only for converting KTs from a co- to a bi-oriented state but also for deprotection of periCEN cohesion, and cleavage of REC8 may be the key event. Crucially, selective cleavage of REC8 in the vicinity of KTs is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata may also be required.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Meiosis/fisiología , Animales , Ratones , Oocitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Separasa/metabolismo , Cohesinas
7.
Elife ; 102021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259632

RESUMEN

Cohesin's association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being 'clamped' by Scc2 and ATP-dependent engagement of cohesin's Smc1 and Smc3 head domains. Scc2's replacement by Pds5 abrogates cohesin's ATPase and has an important role in halting DNA loop extrusion. The ATPase domains of all SMC proteins are separated from their hinge dimerisation domains by 50-nm-long coiled coils, which have been observed to zip up along their entire length and fold around an elbow, thereby greatly shortening the distance between hinges and ATPase heads. Whether folding exists in vivo or has any physiological importance is not known. We present here a cryo-EM structure of the apo form of cohesin that reveals the structure of folded and zipped-up coils in unprecedented detail and shows that Scc2 can associate with Smc1's ATPase head even when it is fully disengaged from that of Smc3. Using cysteine-specific crosslinking, we show that cohesin's coiled coils are frequently folded in vivo, including when cohesin holds sister chromatids together. Moreover, we describe a mutation (SMC1D588Y) within Smc1's hinge that alters how Scc2 and Pds5 interact with Smc1's hinge and that enables Scc2 to support loading in the absence of its normal partner Scc4. The mutant phenotype of loading without Scc4 is only explicable if loading depends on an association between Scc2/4 and cohesin's hinge, which in turn requires coiled coil folding.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cromosomas/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , Dimerización , Regulación Fúngica de la Expresión Génica , Hidrólisis , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
8.
Elife ; 92020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32930661

RESUMEN

In addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are 'clamped' in a sub-compartment created by Scc2's association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/química , ADN de Hongos/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
9.
Curr Biol ; 27(10): 1462-1476.e5, 2017 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-28502659

RESUMEN

In mammalian females, germ cells remain arrested as primordial follicles. Resumption of meiosis is heralded by germinal vesicle breakdown, condensation of chromosomes, and their eventual alignment on metaphase plates. At the first meiotic division, anaphase-promoting complex/cyclosome associated with Cdc20 (APC/CCdc20) activates separase and thereby destroys cohesion along chromosome arms. Because cohesion around centromeres is protected by shugoshin-2, sister chromatids remain attached through centromeric/pericentromeric cohesin. We show here that, by promoting proteolysis of cyclins and Cdc25B at the germinal vesicle (GV) stage, APC/C associated with the Cdh1 protein (APC/CCdh1) delays the increase in Cdk1 activity, leading to germinal vesicle breakdown (GVBD). More surprisingly, by moderating the rate at which Cdk1 is activated following GVBD, APC/CCdh1 creates conditions necessary for the removal of shugoshin-2 from chromosome arms by the Aurora B/C kinase, an event crucial for the efficient resolution of chiasmata.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromosomas , Meiosis , Animales , Subunidad Apc2 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Aurora Quinasa B/metabolismo , Aurora Quinasa C/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Cdc20/fisiología , Proteínas Cdh1/metabolismo , Centrómero , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Centro Germinal , Masculino , Ratones , Ratones Noqueados , Modelos Teóricos , Separasa/metabolismo , Fosfatasas cdc25/fisiología , Cohesinas
10.
Cell Rep ; 14(9): 2108-2115, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26923598

RESUMEN

Sister chromatid cohesion is mediated by cohesin, whose Smc1, Smc3, and kleisin (Scc1) subunits form a ring structure that entraps sister DNAs. The ring is opened either by separase, which cleaves Scc1 during anaphase, or by a releasing activity involving Wapl, Scc3, and Pds5, which bind to Scc1 and open its interface with Smc3. We present crystal structures of Pds5 from the yeast L. thermotolerans in the presence and absence of the conserved Scc1 region that interacts with Pds5. Scc1 binds along the spine of the Pds5 HEAT repeat fold and is wedged between the spine and C-terminal hook of Pds5. We have isolated mutants that confirm the observed binding mode of Scc1 and verified their effect on cohesin by immunoprecipitation and calibrated ChIP-seq. The Pds5 structure also reveals architectural similarities to Scc3, the other large HEAT repeat protein of cohesin and, most likely, Scc2.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas Fúngicas/química , Saccharomycetales , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
11.
Nat Cell Biol ; 17(6): 771-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25961503

RESUMEN

In addition to inter-chromatid cohesion, mitotic and meiotic chromatids must have three physical properties: compaction into 'threads' roughly co-linear with their DNA sequence, intra-chromatid cohesion determining their rigidity, and a mechanism to promote sister chromatid disentanglement. A fundamental issue in chromosome biology is whether a single molecular process accounts for all three features. There is universal agreement that a pair of Smc-kleisin complexes called condensin I and II facilitate sister chromatid disentanglement, but whether they also confer thread formation or longitudinal rigidity is either controversial or has never been directly addressed respectively. We show here that condensin II (beta-kleisin) has an essential role in all three processes during meiosis I in mouse oocytes and that its function overlaps with that of condensin I (gamma-kleisin), which is otherwise redundant. Pre-assembled meiotic bivalents unravel when condensin is inactivated by TEV cleavage, proving that it actually holds chromatin fibres together.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/metabolismo , Meiosis/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Adenosina Trifosfatasas/genética , Animales , Cromátides , Cromosomas/fisiología , Proteínas de Unión al ADN/genética , Meiosis/genética , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Oocitos/citología
12.
FEBS Lett ; 588(20): 3692-702, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25171859

RESUMEN

Sister chromatid cohesion involves entrapment of sister DNAs by a cohesin ring created through association of a kleisin subunit (Scc1) with ATPase heads of Smc1/Smc3 heterodimers. Cohesin's association with chromatin involves subunits recruited by Scc1: Wapl, Pds5, and Scc3/SA, in addition to Scc2/4 loading complex. Unlike Pds5, Wapl, and Scc2/4, Scc3s are encoded by all eukaryotic genomes. Here, a crystal structure of Scc3 reveals a hook-shaped protein composed of tandem α helices. Its N-terminal domain contains a conserved and essential surface (CES) present even in organisms lacking Pds5, Wapl, and Scc2/4, while its C-terminal domain binds a section of the kleisin Scc1. Scc3 turns over in G2/M while maintaining cohesin's association with chromosomes and it promotes de-acetylation of Smc3 upon Scc1 cleavage.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Acetilación , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Cromosómicas no Histona/química , Puntos de Control de la Fase G2 del Ciclo Celular , Datos de Secuencia Molecular , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA