Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172567

RESUMEN

Alterations in Ca2+ homeostasis have been reported in several in vitro and in vivo studies using mice expressing the Alzheimer's disease-associated transgenes, presenilin and the amyloid precursor protein (APP). While intense research focused on amyloid-ß-mediated functions on neuronal Ca2+ handling, the physiological role of APP and its close homolog APLP2 is still not fully clarified. We now elucidate a mechanism to show how APP and its homolog APLP2 control neuronal Ca2+ handling and identify especially the ectodomain APPsα as an essential regulator of Ca2+ homeostasis. Importantly, we demonstrate that the loss of APP and APLP2, but not APLP2 alone, impairs Ca2+ handling, the refill of the endoplasmic reticulum Ca2+ stores, and synaptic plasticity due to altered function and expression of the SERCA-ATPase and expression of store-operated Ca2+ channel-associated proteins Stim1 and Stim2. Long-term AAV-mediated expression of APPsα, but not acute application of the recombinant protein, restored physiological Ca2+ homeostasis and synaptic plasticity in APP/APLP2 cDKO cultures. Overall, our analysis reveals an essential role of the APP family and especially of the ectodomain APPsα in Ca2+ homeostasis, thereby highlighting its therapeutic potential.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Calcio/metabolismo , Hipocampo/patología , Homeostasis , Neuronas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Potenciales Postsinápticos Excitadores , Integrasas/metabolismo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Regulación hacia Arriba
2.
Viruses ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851486

RESUMEN

The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to the spread of SARS-CoV-2 in the infected host is largely unclear. In this study, we show that the loss of TMPRSS2 strongly reduced the replication of the Beta variant in the nose, trachea and lung of C57BL/6 mice, and protected the animals from weight loss and disease. The infection of mice with the Omicron variant did not cause disease, as expected, but again, TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify the key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection, and highlight TMPRSS2 as an attractive target for antiviral intervention.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos C57BL , Pandemias , Serina Endopeptidasas/genética
3.
Front Mol Neurosci ; 15: 945348, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845610

RESUMEN

Signaling of BDNF via its TrkB receptor is crucial in regulating several critical aspects of the architecture and function of neurons both during development and in the adult central nervous system. Indeed, several neurological conditions, such as neurodevelopmental and neurodegenerative disorders are associated with alterations both in the expression levels of BDNF and TrkB, and in their intracellular signaling. Thus, the possibility of promoting BDNF/TrkB signaling has become relevant as a potential therapeutic intervention for neurological disorders. However, the clinical potential of BDNF itself has been limited due to its restricted diffusion rate in biological tissue, poor bioavailability and pharmacological properties, as well as the potential for unwanted side effects due to its ability to also signal via the p75NTR pathway. Several small molecule and biologic drug candidate TrkB agonists have been developed and are reported to have effects in rescuing both the pathological alterations and disease related symptoms in mouse models of several neurological diseases. However, recent side-by-side comparative studies failed to show their specificity for activating TrkB signaling cascades, suggesting the need for the generation and validation of improved candidates. In the present study, we examine the ability of the novel, fully human TrkB agonist antibody ZEB85 to modulate the architecture, activity and synaptic plasticity of hippocampal murine neurons under physiological conditions. Moreover, we show here that ZEB85 prevents ß-amyloid toxicity in cultured hippocampal neurons, in a manner which is comparable to BDNF.

4.
Sci Rep ; 12(1): 19858, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400804

RESUMEN

SARS-CoV-2 variants accumulating immune escape mutations provide a significant risk to vaccine-induced protection against infection. The novel variant of concern (VoC) Omicron BA.1 and its sub-lineages have the largest number of amino acid alterations in its Spike protein to date. Thus, they may efficiently escape recognition by neutralizing antibodies, allowing breakthrough infections in convalescent and vaccinated individuals in particular in those who have only received a primary immunization scheme. We analyzed neutralization activity of sera from individuals after vaccination with all mRNA-, vector- or heterologous immunization schemes currently available in Europe by in vitro neutralization assay at peak response towards SARS-CoV-2 B.1, Omicron sub-lineages BA.1, BA.2, BA.2.12.1, BA.3, BA.4/5, Beta and Delta pseudotypes and also provide longitudinal follow-up data from BNT162b2 vaccinees. All vaccines apart from Ad26.CoV2.S showed high levels of responder rates (96-100%) towards the SARS-CoV-2 B.1 isolate, and minor to moderate reductions in neutralizing Beta and Delta VoC pseudotypes. The novel Omicron variant and its sub-lineages had the biggest impact, both in terms of response rates and neutralization titers. Only mRNA-1273 showed a 100% response rate to Omicron BA.1 and induced the highest level of neutralizing antibody titers, followed by heterologous prime-boost approaches. Homologous BNT162b2 vaccination, vector-based AZD1222 and Ad26.CoV2.S performed less well with peak responder rates of 48%, 56% and 9%, respectively. However, Omicron responder rates in BNT162b2 recipients were maintained in our six month longitudinal follow-up indicating that individuals with cross-protection against Omicron maintain it over time. Overall, our data strongly argue for booster doses in individuals who were previously vaccinated with BNT162b2, or a vector-based primary immunization scheme.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pruebas de Neutralización , Anticuerpos Antivirales , Vacunas contra la COVID-19 , ARN Mensajero , Ad26COVS1 , Vacuna BNT162 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Vacunación
5.
Cells ; 10(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34571950

RESUMEN

A tight regulation of the balance between inhibitory and excitatory synaptic transmission is a prerequisite for synaptic plasticity in neuronal networks. In this context, the neurite growth inhibitor membrane protein Nogo-A modulates synaptic plasticity, strength, and neurotransmitter receptor dynamics. However, the molecular mechanisms underlying these actions are unknown. We show that Nogo-A loss-of-function in primary mouse hippocampal cultures by application of a function-blocking antibody leads to higher excitation following a decrease in GABAARs at inhibitory and an increase in the GluA1, but not GluA2 AMPAR subunit at excitatory synapses. This unbalanced regulation of AMPAR subunits results in the incorporation of Ca2+-permeable GluA2-lacking AMPARs and increased intracellular Ca2+ levels due to a higher Ca2+ influx without affecting its release from the internal stores. Increased neuronal activation upon Nogo-A loss-of-function prompts the phosphorylation of the transcription factor CREB and the expression of c-Fos. These results contribute to the understanding of the molecular mechanisms underlying the regulation of the excitation/inhibition balance and thereby of plasticity in the brain.


Asunto(s)
Calcio/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Proteínas Nogo/metabolismo , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
6.
Cell Rep ; 29(3): 671-684.e6, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618635

RESUMEN

Precisely controlling the excitatory and inhibitory balance is crucial for the stability and information-processing ability of neuronal networks. However, the molecular mechanisms maintaining this balance during ongoing sensory experiences are largely unclear. We show that Nogo-A signaling reciprocally regulates excitatory and inhibitory transmission. Loss of function for Nogo-A signaling through S1PR2 rapidly increases GABAAR diffusion, thereby decreasing their number at synaptic sites and the amplitude of GABAergic mIPSCs at CA3 hippocampal neurons. This increase in GABAAR diffusion rate is correlated with an increase in Ca2+ influx and requires the calcineurin-mediated dephosphorylation of the γ2 subunit at serine 327. These results suggest that Nogo-A signaling rapidly strengthens inhibitory GABAergic transmission by restricting the diffusion dynamics of GABAARs. Together with the observation that Nogo-A signaling regulates excitatory transmission in an opposite manner, these results suggest a crucial role for Nogo-A signaling in modulating the excitation and inhibition balance to restrict synaptic plasticity.


Asunto(s)
Proteínas Nogo/metabolismo , Receptores de GABA-A/metabolismo , Animales , Anticuerpos Bloqueadores/inmunología , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nogo/inmunología , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/genética , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA